Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment for individuals with X-linked thrombocytopenia is typically focused on managing symptoms of the disorder. Splenectomy has been shown to improve platelet counts but also significantly increases the risk of life-threatening infections for patients with XLT. Therefore, these individuals must take antibiotics for the rest of their life to avoid fatal bacteremia. In the event of significant bleeding, platelet transfusions should be administered. Circumcision should be avoided for infant males with XLT due to the risk of bleeding and infection. Regular follow ups to track blood counts should be utilized as well as confirming that any medications, over the counter or prescription, will not interfere with platelet functioning.
Often, no treatment is required or necessary for reactive thrombocytosis. In cases of reactive thrombocytosis of more than 1,000x10/L, it may be considered to administer daily low dose aspirin (such as 65 mg) to minimize the risk of stroke or thrombosis.
However, in primary thrombocytosis, if platelet counts are over 750,000 or 1,000,000, and especially if there are other risk factors for thrombosis, treatment may be needed. Selective use of aspirin at low doses is thought to be protective. Extremely high platelet counts in primary thrombocytosis can be treated with hydroxyurea (a cytoreducing agent) or anagrelide (Agrylin).
In Jak-2 positive disorders, ruxolitinib (Jakafi) can be effective.
Recent research has suggested that hematopoietic stem cell transplantation may be a treatment option for patients with XLT despite associated risks. Other studies have shown that treatment with corticosteroids or intravenous immunoglobulin in any dose or duration may have a beneficial impact on platelet counts, although transiently. Furthermore, research has shown that splenectomy may not be a good treatment option for patients with XLT as it increases the risk of severe infections. This same research showed that patients with XLT have a high overall survival rate but they are at risk for severe life-threatening complications associated with this disorder, such as serious bleeding events and malignancies.
Discontinuation of heparin is critical in a case of heparin-induced thrombocytopenia (HIT). Beyond that, however, clinicians generally treat to avoid a thrombosis, often by starting patients directly on warfarin. For this reason, patients are usually treated with a direct thrombin inhibitor, such as lepirudin or argatroban, which are approved by the FDA for this use. Other blood thinners sometimes used in this setting that are not FDA-approved for treatment of HIT include bivalirudin and fondaparinux. Platelet transfusions are not routinely used to treat HIT because thrombosis, not bleeding, is the primary problem.
The primary treatment for CAMT is bone marrow transplantation.
Bone Marrow/Stem Cell Transplant is the only thing that ultimately cures this genetic disease. Frequent platelet transfusions are required to ensure that platelet levels do not fall to dangerous levels, although this is not always the case. It is known for patients to continue to create very small numbers of platelets over time.
Treatment is guided by the severity and specific cause of the disease. Treatment focuses on eliminating the underlying problem, whether that means discontinuing drugs suspected to cause it or treating underlying sepsis. Diagnosis and treatment of serious thrombocytopenia is usually directed by a hematologist. Corticosteroids may be used to increase platelet production. Lithium carbonate or folate may also be used to stimulate platelet production in the bone marrow.
There is increasing use of immunosuppressants such as mycophenolate mofetil and azathioprine because of their effectiveness. In chronic refractory cases, where immune pathogenesis has been confirmed, the off-label use of the "vinca" alkaloid and chemotherapy agent vincristine may be attempted. However, vincristine has significant side effects and its use in treating ITP must be approached with caution, especially in children.
Thrombopoietin receptor agonists are pharmaceutical agents that stimulate platelet production in the bone marrow. In this, they differ from the previously discussed agents that act by attempting to curtail platelet destruction. Two such products are currently available:
- Romiplostim (trade name Nplate) is a thrombopoiesis stimulating Fc-peptide fusion protein (peptibody) that is administered by subcutaneous injection. Designated an orphan drug in 2003 under United States law, clinical trials demonstrated romiplostim to be effective in treating chronic ITP, especially in relapsed post-splenectomy patients. Romiplostim was approved by the United States Food and Drug Administration (FDA) for long-term treatment of adult chronic ITP on August 22, 2008.
- Eltrombopag (trade name Promacta in the USA, Revolade in the EU) is an orally-administered agent with an effect similar to that of romiplostim. It too has been demonstrated to increase platelet counts and decrease bleeding in a dose-dependent manner. Developed by GlaxoSmithKline and also designated an orphan drug by the FDA, Promacta was approved by the FDA on November 20, 2008.
Side effects of thrombopoietin receptor agonists include headache, joint or muscle pain, dizziness, nausea or vomiting, and an increased risk of blood clots.
Treat the underlying cause
Blood transfusion (PRBC) according to need
There has been no general recommendation for treatment of patients with Giant Platelet Disorders, as there are many different specific classifications to further categorize this disorder which each need differing treatments. Platelet transfusion is the main treatment for people presenting with bleeding symptoms. There have been experiments with DDAVP (1-deamino-8-arginine vasopressin) and splenectomy on people with Giant platelet disorders with mixed results, making this type of treatment contentious.
Treatment is directed at the prevention of haemorrhagic shock. Standard dose prednisolone does not increase the platelet count. High-dose methylprednisolone therapy in children with Onyalai has been shown to improve platelet count and reduce the requirement for transfusions. Vincristine sulphate may be of benefit to some patients. Splenectomy is indicated in patients with severe uncontrollable haemorrhage. High-dose intravenous gammaglobulin may help in increasing the platelet count and cessation of haemorrhage.
Due to the high mortality of untreated TTP, a presumptive diagnosis of TTP is made even when only microangiopathic hemolytic anemia and thrombocytopenia are seen, and therapy is started. Transfusion is contraindicated in thrombotic TTP, as it fuels the coagulopathy. Since the early 1990s, plasmapheresis has become the treatment of choice for TTP. This is an exchange transfusion involving removal of the patient's blood plasma through apheresis and replacement with donor plasma (fresh frozen plasma or cryosupernatant); the procedure must be repeated daily to eliminate the inhibitor and abate the symptoms. If apheresis is not available, fresh frozen plasma can be infused, but the volume that can be given safely is limited due to the danger of fluid overload. Plasma infusion alone is not as beneficial as plasma exchange. Corticosteroids (prednisone or prednisolone) are usually given. Rituximab, a monoclonal antibody aimed at the CD20 molecule on B lymphocytes, may be used on diagnosis; this is thought to kill the B cells and thereby reduce the production of the inhibitor. A stronger recommendation for rituximab exists where TTP does not respond to corticosteroids and plasmapheresis.
Caplacizumab is an alternative option in treating TTP as it has been shown that it induces a faster disease resolution compared with those patient who were on placebo. However, the use of caplacizumab was associated with increase bleeding tendencies in the studied subjects.
Most patients with refractory or relapsing TTP receive additional immunosuppressive therapy, e.g. vincristine, cyclophosphamide, splenectomy or a combination of the above.
Children with Upshaw-Schülman syndrome receive prophylactic plasma every two to three weeks; this maintains adequate levels of functioning ADAMTS13. Some tolerate longer intervals between plasma infusions. Additional plasma infusions may necessary for triggering events, such as surgery; alternatively, the platelet count may be monitored closely around these events with plasma being administered if the count drops.
Measurements of blood levels of lactate dehydrogenase, platelets, and schistocytes are used to monitor disease progression or remission. ADAMTS13 activity and inhibitor levels may be measured during follow-up, but in those without symptoms the use of rituximab is not recommended.
The therapy of an acute TTP episode has to be started as early as possible. The standard treatment is the daily replacement of the missing ADAMTS13 protease in form of plasma infusions or in more severe episodes by plasma exchange. In the latter the patients plasma is replaced by donated plasma. The most common sources of ADAMTS13 is platelet-poor fresh frozen plasma (FFP) or solvent-detergent plasma.
The benefit of plasma exchange compared to plasma infusions alone may result from the additional removal of ULVWF. In general both plasma therapies are well tolerated, several mostly minor complications may be observed. The number of infusion/exchange sessions needed to overcome a TTP episode are variable but usually take less than a week in USS. The intensive plasma-therapy is generally stopped when platelet count increases to normal levels and is stable over several days.
Treating immune-mediated aplastic anemia involves suppression of the immune system, an effect achieved by daily medicine intake, or, in more severe cases, a bone marrow transplant, a potential cure. The transplanted bone marrow replaces the failing bone marrow cells with new ones from a matching donor. The multipotent stem cells in the bone marrow reconstitute all three blood cell lines, giving the patient a new immune system, red blood cells, and platelets. However, besides the risk of graft failure, there is also a risk that the newly created white blood cells may attack the rest of the body ("graft-versus-host disease"). In young patients with an HLA matched sibling donor, bone marrow transplant can be considered as first-line treatment, patients lacking a matched sibling donor typically pursue immunosuppression as a first-line treatment, and matched unrelated donor transplants are considered a second-line therapy.
Medical therapy of aplastic anemia often includes a course of antithymocyte globulin (ATG) and several months of treatment with ciclosporin to modulate the immune system. Chemotherapy with agents such as cyclophosphamide may also be effective but has more toxicity than ATG. Antibody therapy, such as ATG, targets T-cells, which are believed to attack the bone marrow. Corticosteroids are generally ineffective, though they are used to ameliorate serum sickness caused by ATG. Normally, success is judged by bone marrow biopsy 6 months after initial treatment with ATG.
One prospective study involving cyclophosphamide was terminated early due to a high incidence of mortality, due to severe infections as a result of prolonged neutropenia.
In the past, before the above treatments became available, patients with low leukocyte counts were often confined to a sterile room or bubble (to reduce risk of infections), as in the case of Ted DeVita.
Initial treatment is with glucocorticoid corticosteroids or intravenous immunoglobulin, a procedure that is also used in ITP cases. In children, good response to a short steroid course is achieved in approximately 80 percent of cases. Although the majority of cases initially respond well to treatment, relapses are not uncommon and immunosuppressive drugs (e.g. ciclosporin, mycophenolate mofetil, vincristine and danazol) are subsequently used, or combinations of these.
The off-label use of rituximab (trade name Rituxan) has produced some good results in acute and refractory cases, although further relapse may occur within a year. Splenectomy is effective in some cases, but relapses are not uncommon.
The only prospect for a permanent cure is the high-risk option of an allogeneic hematopoietic stem cell transplantation (SCT).
Not all affected patients seem to need a regular preventive plasma infusion therapy, especially as some reach longterm remission without it. Regular plasma infusions are necessary in patients with frequent relapses and in general situations with increased risk to develop an acute episode (as seen above) such as pregnancy. Plasma infusions are given usually every two to three weeks to prevent acute episodes of USS but are often individually adapted.
Regular administration of exogenous granulocyte colony-stimulating factor (filgrastim) clinically improves neutrophil counts and immune function and is the mainstay of therapy, although this may increase risk for myelofibrosis and acute myeloid leukemia in the long term.
Over 90% of SCN responds to treatment with granulocyte colony-stimulating factor (filgrastim), which has significantly improved survival.
There is no real treatment for Felty's syndrome, rather the best method in management of the disease is to control the underlying rheumatoid arthritis. Immunosuppressive therapy for RA often improves granulocytopenia and splenomegaly; this finding reflects the fact that Felty's syndrome is an immune-mediated disease. A major challenge in treating FS is recurring infection caused by neutropenia. Therefore, in order to decide upon and begin treatment, the cause and relationship of neutropenia with the overall condition must be well understood. Most of the traditional medications used to treat RA have been used in the treatment of Felty's syndrome. No well-conducted, randomized, controlled trials support the use of any single agent. Most reports on treatment regimens involve small numbers of patients.
Splenectomy may improve neutropenia in severe disease.
Use of rituximab and leflunomide have been proposed.
Use of gold therapy has also been described.
Prognosis is dependent on the severity of symptoms and the patient's overall health.
Patient with KMS can be extremely ill and may need intensive care. They are at risk of bleeding complications including intracranial hemorrhage. The thrombocytopenia and coagulopathy are managed with platelet transfusions and fresh frozen plasma, although caution is needed due to the risk of fluid overload and heart failure from multiple transfusions. The possibility of disseminated intravascular coagulation, a dangerous and difficult-to-manage condition, is concerning. Anticoagulant and antiplatelet medications can be used after careful assessment of the risks and benefits.
Management of KMS, particularly in severe cases, can be complex and require the joint effort of multiple subspecialists. This is a rare disease with no consensus treatment guidelines or large randomized controlled trials to guide therapy.
Treatment of Wiskott–Aldrich syndrome is currently based on correcting symptoms. Aspirin and other nonsteroidal anti-inflammatory drugs should be avoided, since these may interfere with platelet function. A protective helmet can protect children from bleeding into the brain which could result from head injuries. For severely low platelet counts, patients may require platelet transfusions or removal of the spleen. For patients with frequent infections, intravenous immunoglobulins (IVIG) can be given to boost the immune system. Anemia from bleeding may require iron supplementation or blood transfusion.
As Wiskott–Aldrich syndrome is primarily a disorder of the blood-forming tissues, a hematopoietic stem cell transplant, accomplished through a umbilical cord blood or bone marrow transplant offers the only current hope of cure. This may be recommended for patients with HLA-identical donors, matched sibling donors, or even in cases of incomplete matches if the patient is age 5 or under.
Studies of correcting Wiskott–Aldrich syndrome with gene therapy using a lentivirus have begun.
Proof-of-principle for successful hematopoietic stem cell gene therapy has been provided for patients with Wiskott–Aldrich syndrome.
Currently, many investigators continue to develop optimized gene therapy vectors. In July 2013 the Italian San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET) reported that three children with Wiskott–Aldrich syndrome showed significant improvement 20–30 months after being treated with a genetically modified lentivirus. In April 2015 results from a follow-up British and French trial where six children with Wiskott–Aldrich syndrome were treated with gene therapy were described as promising. Median follow-up time was 27 months.
In terms of treatment/management, bleeding events can be controlled by platelet transfusion.
Most heterozygotes, with few exceptions, do not have a bleeding diathesis. BSS presents as a bleeding disorder due to the inability of platelets to bind and aggregate at sites of vascular endothelial injury. In the event of an individual with mucosal bleeding tranexamic acid can be given.
The affected individual may need to avoid contact sports and medications such as aspirin, which can increase the possibility of bleeding. A potential complication is the possibility of the individual producing antiplatelet antibodies
The one known curative treatment is allogeneic stem cell transplantation, but this approach involves significant risks.
Other treatment options are largely supportive, and do not alter the course of the disorder (with the possible exception of ruxolitinib, as discussed below). These options may include regular folic acid, allopurinol or blood transfusions. Dexamethasone, alpha-interferon and hydroxyurea (also known as hydroxycarbamide) may play a role.
Lenalidomide and thalidomide may be used in its treatment, though peripheral neuropathy is a common troublesome side-effect.
Frequent blood transfusions may also be required. If the patient is diabetic and is taking a sulfonylurea, this should be stopped periodically to rule out drug-induced thrombocytopenia.
Splenectomy is sometimes considered as a treatment option for patients with myelofibrosis in whom massive splenomegaly is contributing to anaemia because of hypersplenism, particularly if they have a heavy requirement for blood transfusions. However, splenectomy in the presence of massive splenomegaly is a high-risk procedure, with a mortality risk as high as 3% in some studies.
In November 2011, the FDA approved ruxolitinib (Jakafi) as a treatment for intermediate or high-risk myelofibrosis. Ruxolitinib serves as an inhibitor of JAK 1 and 2.
The "New England Journal of Medicine" (NEJM) published results from two Phase III studies of ruxolitinib. These data showed that the treatment significantly reduced spleen volume, improved symptoms of myelofibrosis, and was associated with improved overall survival compared to placebo.
Cordocentesis can be performed in utero to determine the platelet count of the fetus. This procedure is only performed if a "prior" pregnancy was affected by . Intrauterine transfusions can be performed during cordocentesis for primary prevention of intracerebral hemorrhage. Any administered cellular blood products must be irradiated to reduce the risk of graft-versus-host disease in the fetus. Additionally, all administered blood products should be reduced-risk ( seronegative and leukoreduced are considered essentially equivalent for the purposes of risk reduction).
If intrauterine platelet transfusions are performed, they are generally repeated weekly (platelet lifespan after transfusion is approximately 8 to 10 days). Platelets administered to the fetus must be negative for the culprit antigen (often -1a, as stated above). Many blood suppliers (such as American Red Cross and United Blood Services) have identified -1a negative donors. An alternative donor is the mother who is, of course, negative for the culprit antigen. However, she must meet general criteria for donation and platelets received from the mother must be washed to remove the offending alloantibody and irradiated to reduce the risk of graft-versus-host disease. If platlet transfusions are needed urgently, incompatible platelets may be used, with the understanding that they may be less effective and that the administration of any blood product carries risk.
The use of Intravenous immunoglobulin () during pregnancy and immediately after birth has been shown to help reduce or alleviate the effects of in infants and reduce the severity of thrombocytopenia. The most common treatment is weekly infusions at a dosage of 1 g/kg beginning at 16 to 28 weeks of pregnancy, depending on the severity of the disease in the previous affected child, and continuing until the birth of the child. In some cases this dosage is increased to 2 g/kg and/or combined with a course of prednisone depending on the exact circumstances of the case. Although this treatment has not been shown to be effective in all cases it has been shown to reduce the severity of thrombocytopenia in some. Also, it is suspected that (though not understood why) provides some added protection from intercranial haemorrhage () to the fetus. Even with treatment, the fetal platelet count may need to be monitored and platelet transfusions may still be required.
The goal of both and platelet transfusion is to avoid hemorrhage. Ultrasound monitoring to detect hemorrhage is not recommended as detection of intracranial hemorrhage generally indicates permanent brain damage (there is no intervention that can be performed to reverse the damage once it has occurred).
Before delivery, the fetal platelet count should be determined. A count of >50,000 μL is recommended for vaginal delivery and the count should be kept above 20,000 μL after birth.
Treatments range from platelet transfusions to surgery aimed at either centralizing the hand over the ulna to improve functionality of the hand or aimed at 'normalizing' the appearance of the arm, which is much shorter and 'clubbed.' There is some controversy surrounding the role of surgery. The infant mortality rate has been curbed by new technology, including platelet transfusions, which can even be performed in utero. The critical period is the first and sometimes second year of life. For most people with TAR, platelet counts improve as they grow out of childhood.