Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no causative / curative therapy. Symptomatic medical treatments are focussing on symptoms caused by orthopaedic, dental or cardiac problems. Regarding perioperative / anesthesiological management, recommendations for medical professionals are published at OrphanAnesthesia.
Management of AOS is largely symptomatic and aimed at treating the various congenital anomalies present in the individual. When the scalp and/or cranial bone defects are severe, early surgical intervention with grafting is indicated.
Because newborns can breathe only through their nose, the main goal of postnatal treatment is to establish a proper airway. Primary surgical treatment of FND can already be performed at the age of 6 months, but most surgeons wait for the children to reach the age of 6 to 8 years. This decision is made because then the neurocranium and orbits have developed to 90% of their eventual form. Furthermore, the dental placement in the jaw has been finalized around this age.
There is no known cure. In selected patients orthopaedic surgery may be helpful to try to gain some functionality of severely impaired joints.
Structural nasal deformities are corrected during or shortly after the facial bipartition surgery. In this procedure, bone grafts are used to reconstruct the nasal bridge. However, a second procedure is often needed after the development of the nose has been finalized (at the age of 14 years or even later).
Secondary rhinoplasty is based mainly on a nasal augmentation, since it has been proven better to add tissue to the nose than to remove tissue. This is caused by the minimal capacity of contraction of the nasal skin after surgery.
In rhinoplasty, the use of autografts (tissue from the same person as the surgery is performed on) is preferred. However, this is often made impossible by the relative damage done by previous surgery. In those cases, bone tissue from the skull or the ribs is used. However, this may give rise to serious complications such as fractures, resorption of the bone, or a flattened nasofacial angle.
To prevent these complications, an implant made out of alloplastic material could be considered. Implants take less surgery time, are limitlessly available and may have more favorable characteristics than autografts. However, possible risks are rejection, infection, migration of the implant, or unpredictable changes in the physical appearance in the long term.
At the age of skeletal maturity, orthognathic surgery may be needed because of the often hypoplastic maxilla. Skeletal maturity is usually reached around the age of 13 to 16. Orthognathic surgery engages in diagnosing and treating disorders of the face and teeth- and jaw position.
Like treatment options, the prognosis is dependent on the severity of the symptoms. Despite the various symptoms and limitations, most individuals have normal intelligence and can lead a normal life.
Because kniest dysplasia can affect various body systems, treatments can vary between non-surgical and surgical treatment. Patients will be monitored over time, and treatments will be provided based on the complications that arise.
No specific treatment is available. Management is only supportive and preventive.
Those who are diagnosed with the disease often die within the first few months of life. Almost all children with the disease die by the age of three.
Osteofibrous dysplasia is treated with marginal resection with or without bone grafting, depending on the size of the lesion and the extent of bony involvement. However, due to the high rate of recurrence in skeletally immature individuals, this procedure is usually postponed until skeletal maturity.
Available treatments address the symptoms of CCD, not the underlying defect. Early diagnosis and aggressive salt replacement therapy result in normal growth and development, and generally good outcomes. Replacement of NaCl and KCl has been shown to be effective in children.
A potential treatment is butyrate.
Treatment in fibrous dysplasia is mainly palliative, and is focused on managing fractures and preventing deformity. There are no medications capable of altering the disease course. Intravenous bisphosphonates may be helpful for treatment of bone pain, but there is no clear evidence that they strengthen bone lesions or prevent fractures. Surgical techniques that are effective in other disorders, such as bone grafting, curettage, and plates and screws, are frequently ineffective in fibrous dysplasia and should be avoided. Intramedullary rods are generally preferred for management of fractures and deformity in the lower extremities. Progressive scoliosis can generally be managed with standard instrumentation and fusion techniques. Surgical management in the craniofacial skeleton is complicated by frequent post-operative FD regrowth, and should focus on correction of functional deformities. Prophylactic optic nerve decompression increases the risk of vision loss and is contraindicated.
Managing endocrinopathies is a critical component of management in FD. All patients with fibrous dysplasia should be evaluated and treated for endocrine diseases associated with McCune–Albright syndrome. In particular untreated growth hormone excess may worsen craniofacial fibrous dysplasia and increase the risk of blindness. Untreated hypophosphatemia increases bone pain and risk of fractures.
The only effective line of treatment for malignant infantile osteopetrosis is hematopoietic stem cell transplantation. It has been shown to provide long-term disease-free periods for a significant percentage of those treated; can impact both hematologic and skeletal abnormalities; and has been used successfully to reverse the associated skeletal abnormalities.
Radiographs of at least one case with malignant infantile osteopetrosis have demonstrated bone remodeling and recanalization of medullar canals following hematopoietic stem cell transplantation. This favorable radiographic response could be expected within one year following the procedure - nevertheless, primary graft failure can prove fatal.
Treatment most commonly involves the removal of the complete lesion during a single procedure, via the frontonasal bone flaps; recurrence is likely. Ablation treatment with an looks to be a possibility for permanent removal.
Some success has been seen using intralesional injections of formalin, performed by endoscopy.
There are several options for treatment of mouth anomalies like Tessier cleft number 2-3-7 . These clefts are also seen in various syndromes like Treacher Collins syndrome and hemifacial microsomia, which makes the treatment much more complicated. In this case, treatment of mouth anomalies is a part of the treatment of the syndrome.
The fibrocartilaginous effects of fibrochondrogenesis on chondrocytes has shown potential as a means to produce therapeutic cellular biomaterials via tissue engineering and manipulation of stem cells, specifically human embryonic stem cells.
Utilization of these cells as curative cartilage replacement materials on the cellular level has shown promise, with beneficial applications including the repair and healing of damaged knee menisci and synovial joints; temporomandibular joints, and vertebra.
There is currently no cure for pseudoachondroplasia. However, management of the various health problems that result from the disorder includes medications such as analgesics (painkillers) for joint discomfort, osteotomy for lower limb deformities, and the surgical treatment of scoliosis. Prevention of some related health problems includes physical therapy to preserve joint flexibility and regular examinations to detect degenerative joint disease and neurological manifestations (particularly spinal cord compression). Additionally, healthcare providers recommend treatment for psychosocial issues related to short stature and other physical deformities for both affected individuals and their families (OMIM 2008).
Surgery is curative despite possible local relapses. Wide resection of the tumor and resection arthrodesis with an intramedullary nail, vertebrectomy and femoral head allograft replacement of the vertebral body, resection of the iliac wing and hip joint disarticulation have been among the performed procedures.
The close resemblance of FCMB to fibrocartilaginous dysplasia has suggested to some scholars that they might be closely related entities, although the latter features woven bone trabeculae without osteoblastic rimming, which is a quite distinctive aspect. Instead the occurrence of epiphyseal plate-like cartilage is peculiar of the former.
There is no treatment at this time to promote bone growth in chondrodystrophy patients. Certain types of growth hormone seem to increase the rate of growth during the first year of life/treatment, but have no substantial effect in adult patients. Only a few surgical centers in the world perform, experimentally, leg and arm lengthening procedures. Most common therapies are found in seeking help from: family physicians, pediatrics, internists, endocrinologists, geneticists, orthopedists and neurologists.
The overall prognosis is excellent in most cases. Most children with Adams–Oliver syndrome can likely expect to have a normal life span. However, individuals with more severe scalp and cranial defects may experience complications such as hemorrhage and meningitis, leading to long-term disability.
There is no single strategy for treatment of facial clefts, because of the large amount of variation in these clefts. Which kind of surgery is used depends on the type of clefting and which structures are involved. There is much discussion about the timing of reconstruction of bone and soft tissue. The problem with early reconstruction is the recurrence of the deformity due to the intrinsic restricted growth. This requires additional operations at a later age to make sure all parts of the face are in proportion. A disadvantage of early bone reconstruction is the chance to damage the tooth germs, which are located in the maxilla, just under the orbit. The soft tissue reconstruction can be done at an early age, but only if the used skin flap can be used again during a second operation. The timing of the operation depends on the urgency of the underlying condition. If the operation is necessary to function properly, it should be done at early age. The best aesthetic result is achieved when the incisions are positioned in areas which attract the least attention (they cover up the scars). If, however, the function of a part of the face isn’t damaged, the operation depends on psychological factors and the facial area of reconstruction.
The treatment plan of a facial cleft is planned right after diagnosis. This plan includes every operation needed in the first 18 years of the patients life to reconstruct the face fully.
In this plan, a difference is made between problems that need to be solved to improve the health of the patient (coloboma) and problems that need to be solved for a better cosmetic result (hypertelorism).
The treatment of the facial clefts can be divided in different areas of the face: the cranial anomalies, the orbital and eye anomalies, the nose anomalies, the midface anomalies and the mouth anomalies.
When it comes to treatment it is important to differentiate a thumb that needs stability, more web width and function, or a thumb that needs to be replaced by the index finger. Severe thumb hypoplasia is best treated by pollicization of the index finger. Less severe thumb hypoplasia can be reconstructed by first web space release, ligament reconstruction and muscle or tendon transfer.
It has been recommended that pollicization is performed before 12 months, but a long-term study of pollicizations performed between the age of 9 months and 16 years showed no differences in function related to age at operation.
It is important to know that every reconstruction of the thumb never gives a normal thumb, because there is always a decline of function. When a child has a good index finger, wrist and fore-arm the maximum strength of the thumb will be 50% after surgery in comparison with a normal thumb. The less developed the index finger, wrist and fore-arm is, the less strength the reconstructed thumb will have after surgery.
MRI will help with the diagnosis of structural abnormality of the brain. Genetic testing may also be pursued.
Polyostotic fibrous dysplasia is a form of fibrous dysplasia affecting more than one bone.
McCune-Albright syndrome includes polyostotic fibrous dysplasia as part of its presentation.
One treatment that has been used is bisphosphonates.
Non-surgical interventions include three elements: weight control, exercise control, and medication. Canine massage may alleviate discomfort and help move lymph and nutrients through the system. Weight control is often "the single most important thing that we can do to help a dog with arthritis", and consequentially "reducing the dog's weight is enough to control all of the symptoms of arthritis in many dogs". Reasonable exercise stimulates cartilage growth and reduces degeneration (though excessive exercise can do harm too), and also regular long walks in early or mild dysplasia can help prevent loss of muscle mass to the hips. Medication can reduce pain and discomfort, and also reduce damaging inflammation.
Non-surgical intervention is usually via a suitable non-steroidal anti-inflammatory drug (NSAID) which doubles as an anti-inflammatory and painkiller. Typical NSAIDs used for hip dysplasia include carprofen and meloxicam (often sold as Rimadyl and Metacam respectively), both used to treat arthritis resulting from dysplasia, although other NSAIDs such as tepoxalin (Zubrin) and prednoleucotropin ("PLT", a combination of cinchophen and prednisolone) are sometimes tried. NSAIDs vary dramatically between species as to effect: a safe NSAID in one species may be unsafe in another. It is important to follow veterinary advice.
A glucosamine-based nutritional supplement may give the body additional raw materials used in joint repair. Glucosamine can take 3–4 weeks to start showing its effects, so the trial period for medication is usually at least 3–5 weeks. In vitro, glucosamine has been shown to have negative effects on cartilage cells.
It is also common to try multiple anti-inflammatories over a further 4–6 week period, if necessary, since an animal will often respond to one type but fail to respond to another. If one anti-inflammatory does not work, a vet will often try one or two other brands for 2–3 weeks each, also in conjunction with ongoing glucosamine, before concluding that the condition does not seem responsive to medication.
Carprofen, and other anti-inflammatories in general, whilst very safe for most animals, can sometimes cause problems for some animals, and (in a few rare cases) sudden death through liver toxicity. This is most commonly discussed with carprofen but may be equally relevant with other anti-inflammatories. As a result, it is often recommended to perform monthly (or at least, twice-annually) blood tests to confirm that the animal is not reacting adversely to the medications. Such side effects are rare but worth being aware of, especially if long-term use is anticipated.
This regimen can usually be maintained for the long term, as long as it is effective in keeping the symptoms of dysplasia at bay.
Some attempts have been made to treat the pain caused by arthritic changes through the use of "laser therapy", in particular "class IV laser therapy". Well-controlled clinical trials are unfortunately lacking, and much of the evidence for these procedures remains anecdotal.
Prognosis for this condition varies according to extent of the hematoma, but is normally fairly good. Smaller hematomae carry a 99% chance of full recovery, with larger ones carrying a recovery rate ranging from 80 to 90%. Occasional epistaxis may follow the surgery, but this is temporary and should subside within 2 to 3 weeks after surgery.