Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment for MSS is symptomatic and supportive including physical and occupational therapy, speech therapy, and special education. Cataracts must be removed when vision is impaired, generally in the first decade of life. Hormone replacement therapy is needed if hypogonadism is present.
Treatments are usually based on the individuals symptoms that are displayed. The seizures are controlled with anticonvulsant medication. For the behavior problems, the doctors proscribe to a few medications and behavioral modification routines that involve therapists and other types of therapy. Even if mental retardation is severe, it does not seem to shorten the lifespan of the patient or to get worse with age.
Treatment for Sturge–Weber syndrome is symptomatic. Laser treatment may be used to lighten or remove the birthmark. Anticonvulsant medications may be used to control seizures. Doctors recommend early monitoring for glaucoma, and surgery may be performed on more serious cases. When one side of the brain is affected and anticonvulsants prove ineffective, the standard treatment is neurosurgery to remove or disconnect the affected part of the brain (hemispherectomy). Physical therapy should be considered for infants and children with muscle weakness. Educational therapy is often prescribed for those with mental retardation or developmental delays, but there is no complete treatment for the delays.
Brain surgery involving removing the portion of the brain that is affected by the disorder can be successful in controlling the seizures so that the patient has only a few seizures that are much less intense than pre-surgery. Surgeons may also opt to "switch-off" the affected side of the brain.
Latanoprost (Xalatan), a prostaglandin, may significantly reduce IOP (intraocular pressure) in patients with glaucoma associated with Sturge–Weber syndrome. Latanoprost is commercially formulated as an aqueous solution in a concentration of 0.005% preserved with 0.02% benzalkonium chloride (BAC). The recommended dosage of latanoprost is one drop daily in the evening, which permits better diurnal IOP control than does morning instillation. Its effect is independent of race, gender or age, and it has few to no side effects. Contraindications include a history of CME, epiretinal membrane formation, vitreous loss during cataract surgery, history of macular edema associated with branch retinal vein occlusion, history of anterior uveitis, and diabetes mellitus. It is also wise to advise patients that unilateral treatment can result in heterochromia or hypertrichosis that may become cosmetically objectionable.
There does not yet exist a specific treatment for IP. Treatment can only address the individual symptoms.
Treatments for CCCA remain investigational. Altering hair care practices has not been proven to assist in hair rejuvenation. High-dose topical steroids, antibiotics, immunomodulators such as tacrolimus (Protopic) and pimecrolimus (Elidel), and anti-androgen/5alpha Reductase inhibitors have been used with unknown efficacy.
There are no treatment to return to its normal functions. However, there are treatments for the different symptoms.
For the Developmental symptoms, Educational intervention and speech therapy beginning in infancy could help to reduce the high risk for motor, cognitive, speech, and language delay
For theSkeletal features, referral to an orthopedist for consideration of surgical release of contractures. In addition,early referral to physical therapy could help increase joint mobility.
Lastly, Thyroid hormone replacement could help out the thyroid dysfunction
There is currently no cure for GAPO syndrome, but some options are available to reduce the symptoms. Nearsightedness, which affects some sufferers of the disease, can be treated by corrective lenses. Unfortunately, optic atrophy as a result of degradation of the optic nerve (common with GAPO syndrome) cannot be corrected. Corticosteroids have been proposed as a treatment for optic nerve atrophy, but their effectiveness is disputed, and no steroid based treatments are currently available.
Treatment of 3-M syndrome is aimed at the specific symptoms presented in each individual. With the various symptoms of this disorder being properly managed and affected individuals having normal mental development, 3-M syndrome is not a life - threatening condition and individuals are able to lead a near normal life with normal life expectancy.
Treatment may involve the coordinated efforts of many healthcare professionals, such as pediatricians, orthopedists, dentists and/or other specialists depending on the symptoms.
- Possible management options for short stature are surgical bone lengthening or growth hormone therapy.
- Orthopedic techniques and surgery may be used to treat certain skeletal abnormalities.
- Plastic surgery may also be performed on individuals to help correct certain cranio-facial anomalies.
- Individuals with dental abnormalities may undergo corrective procedures such as braces or oral surgeries.
Treatment is supportive.
- The aplastic anemia and immunodeficiency can be treated by bone marrow transplantation.
- Supportive treatment for gastrointestinal complications and infections.
- Genetic counselling.
There is no cure for Pseudo-Hurler Polydystrophy/Mucolipidosis IIIA. Treatment is limited to controlling or reducing symptoms associated with this disorder. Physio-therapy, particularly hydrotherapy has proven effective at relieving muscle stiffness and increasing mobility. The use of crutches, a wheelchair or scooters are treatment options as the metabolic bone disease progresses. The insertion of rods in the spine to stabilize the vulnerable areas can treat scoliosis. Heart valve replacement surgery may be necessary as this disorder progresses.
There is no known cure available for the Wilson-Turner Syndrome. Instead, treatment options are available to fight individual symptoms. For obesity, a nutritional diet manipulation is combined with an exercise regimen that has a greater energy expenditure than intake. For hypogonadism, testosterone replacement is done. Finally, for gynecomastia, weight loss using similar methods for obesity is prescribed. However, if the individual finds his increased breast tissue psychologically distressing and/or is too severe, reduction mammaplasty is done. Currently, researchers are investigating therapy using antiestrogens and aromatase inhibitors to treat persistent pubertal gynecomastia.
To treat the trigonocephaly, expanding the distance between orbits using springs seems to work. It allows enough space for the brain to grow and it creates a normal horizontal axis of the orbits and supraorbital bar. The endoscopic surgery started to become popular since the early 90's, but it has some technical limitations (only strip cranictomy is possible). There have been few attempts to go beyond the limits.
Aesthetic outcomes of metopic surgery have been good. Surgery does not have a perfect outcome because there will most likely be minor irregularities. Sometimes reoperations are needed for the severe cases. Trying to hollow out the temporal, and the hypoterlorism are very hard to correct. The hypotelorism usually stays not corrected and in order to correct the temporal hollowing, a second operation is most likely needed.
Although it is possible for the birthmark and atrophy in the cerebral cortex to be present without symptoms, most infants will develop convulsive seizures during their first year of life. There is a greater likelihood of intellectual impairment when seizures are resistant to treatment. Studies do not support the widely held belief that seizure frequency early in life in patients who have SWS is a prognostic indicator.
MOMO syndrome is an extremely rare genetic disorder which belongs to the overgrowth syndromes and has been diagnosed in only six cases around the world, and occurs in 1 in 100 million births. The name is an acronym of the four primary aspects of the disorder: Macrosomia (excessive birth weight), Obesity, Macrocephaly (excessive head size) and Ocular abnormalities. It is unknown if it is a life-limiting condition. MOMO syndrome was first diagnosed in 1993 by Professor Célia Priszkulnik Koiffmann, a Brazilian researcher in the Genetic and Clinical Studies of neurodevelopmental disorders.
This syndrome's acronym is an intended pun. It refers to the traditionally tall and obese king of Carnivals, Momus—Rei Momo in Portuguese.
Recent research has been focused on studying large series of cases of 3-M syndrome to allow scientists to obtain more information behind the genes involved in the development of this disorder. Knowing more about the underlying mechanism can reveal new possibilities for treatment and prevention of genetic disorders like 3-M syndrome.
- One study looks at 33 cases of 3M syndrome, 23 of these cases were identified as CUL7 mutations: 12 being homozygotes and 11 being heterozygotes. This new research shows genetic heterogeneity in 3M syndrome, in contrast to the clinical homogeneity. Additional studies are still ongoing and will lead to the understanding of this new information.
- This study provides more insight on the three genes involved in 3M syndrome and how they interact with each other in normal development. It lead to the discovery that the CUL7, OBS1, and CCDC8 form a complex that functions to maintain microtubule and genomic integrity.
Malouf syndrome (also known as "congestive cardiomyopathy-hypergonadotropic hypogonadism syndrome") is a congenital disorder that causes one or more of the following symptoms: mental retardation, ovarian dysgenesis, congestive cardiomyopathy, broad nasal base, blepharoptosis, and bone abnormalities, and occasionally marfanoid habitus (tall stature with long and thin limbs, little subcutaneous fat, arachnodactyly, joint hyperextension, narrow face, small chin, large testes, and hypotonia).
This disease is named after J. Malouf, who performed a case study on a family suffering from this disease in 1985.
Because MOMO is such a rare disorder, very few studies have been conducted into its causes. Current research suggests that it is linked to a de novo (new) autosomal dominant mutation.
Unlike Borjeson-Forssman-Lehmann syndrome, a disorder that was determined to be very similar to WTS, the individuals with Wilson–Turner syndrome do not develop cataracts or hypermetropia later in life. By far, the most debilitating part of this disorder is intellectual disability. Many of the other symptoms are more easily managed through hormone treatment, proper diet and exercise, and speech therapy.
Hyperphosphatasia with mental retardation syndrome, HPMRS, also known as Mabry syndrome, has been described in patients recruited on four continents world-wide. Mabry syndrome was confirmed to represent an autosomal recessive syndrome characterized by severe mental retardation, considerably elevated serum levels of alkaline phosphatase, hypoplastic terminal phalanges, and distinct facial features that include: hypertelorism, a broad nasal bridge and a rectangular face.
DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome is a genetic disease which is inherited in an autosomal recessive fashion. DOOR syndrome is characterized by mental retardation, sensorineural deafness, abnormal nails and phalanges of the hands and feet, and variable seizures. A similar deafness-onychodystrophy syndrome is transmitted as an autosomal dominant trait and has no mental retardation. Some authors have proposed that it may be the same as Eronen Syndrome, but since both disorders are extremely rare it is hard to make a determination.
DeSanctis–Cacchione syndrome is an extremely rare disorder characterized by the skin and eye symptoms of xeroderma pigmentosum (XP) occurring in association with microcephaly, progressive mental retardation, retarded growth and sexual development, deafness, choreoathetosis, ataxia and quadriparesis.
Treatment of manifestations: special hair care products to help manage dry and sparse hair; wigs; artificial nails; emollients to relieve palmoplantar hyperkeratosis.
Satoyoshi syndrome, also known as Komura-Guerri syndrome, is a rare progressive disorder of presumed autoimmune cause, characterized by painful muscle spasms, alopecia, diarrhea, endocrinopathy with amenorrhoea and secondary skeletal abnormalities. The syndrome was first reported in 1967 by Eijiro Satoyoshi and Kaneo Yamada in Tokyo, Japan. To this date, fewer than 50 cases worldwide have been reported for the Satoyoshi syndrome.
People with the syndrome typically develop symptoms of the illness at a young age, usually between the age of six and fifteen years old. The initial symptoms are muscle spasms in the legs and alopecia, also known as baldness. The spasms are painful and progressive and their frequency varies from 1 or 2 to 100 per day, each lasting a few minutes. It can be sufficiently severe to produce abnormal posturing of the affected limbs, particularly the thumbs. With progression the illness involves the pectoral girdle and trunk muscles and finally the masseters and temporal muscles. The spasms usually spare the facial muscles. Severe spasms can interfere with respiration and speech. During an attack-free period, non-stimulus-sensitive myoclonus can occur in the arms, legs and neck. Diarrhea occurs in the first 2–3 years with intolerance to carbohydrate and high glucose diets. Endocrinopathy manifests as amenorrhea and hypoplasia of the uterus. Affected children fail to attain height after 10–12 years of age.
The syndrome is not known to be a primary cause of mortality, but some patients have died as a result of secondary complications, such as respiratory failure and malnourishment.
In one 6-year-old patient antibodies to GABA-producing enzyme glutamate decarboxylase were detected.
Sanjad-Sakati syndrome is a rare autosomal recessive genetic condition seen in offspring of Middle Eastern origin. It was first described in Saudi Arabia, but has been seen in Qatari, Kuwaiti, Omani and other children from the Middle East as well as elsewhere. The condition is caused by mutations or deletions in the TBCE gene of Chromosome No.1.
The condition is characterised by a triad of growth and mental retardation, hypoparathyroidism and dysmorphism.
Senter syndrome (also known as "Desmons' syndrome") is a cutaneous condition characterized by similar skin changes and congenital hearing impairment to keratitis–ichthyosis–deafness syndrome, but is associated with glycogen storage leading to hepatomegaly, hepatic cirrhosis, growth failure and mental retardation.