Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
An example antibody for use in immunotherapy is Rituximab. Rituximab has specific use in treatment of NLPHL as it is a chimeric monoclonal antibody against the protein CD20. Studies indicate Rituximab offers potential in relapsed or refractory patients, and also in front-line treatment especially in advanced stages. Because of a tendency for relapse, maintenance treatment such as every 6 months for 2 years is suggested. Rituximab has been shown to improve patient outcomes after histological transformation.
There is no consensus regarding the best treatment protocol. Several considerations should be taken into account including age, stage, and prognostic scores (see International Prognostic Index). Patients with advanced disease who are asymptomatic might benefit from a watch and wait approach, as early treatment does not provide survival benefit. When patients are symptomatic, specific treatment is required, which might include various combinations of alkylators, nucleoside analogues, anthracycline-containing chemotherapy regimens (e.g., CHOP), monoclonal antibodies (e.g. rituximab),
radioimmunotherapy, autologous (self) and allogeneic (donor) hematopoietic stem cell transplantation. Follicular lymphoma is regarded as incurable, unless the disease is localized, in which case it can be cured by local irradiation. Although allogeneic stem cell transplantation may be curative, the mortality from the procedure is too high to be a first line option.
In 2010 rituximab was approved by the European Commission for first-line maintenance treatment of follicular lymphoma. Pre-clinical evidence suggests that rituximab could be also used in combination with integrin inhibitors to overcome the resistance to rituximab mediated by stromal cells . However, follicular lymphoma which is CD20 negative will not benefit from Rituximab, which targets CD20.
Trial results released in June 2012 show that bendamustine, a drug first developed in East Germany in the 1960s, more than doubled disease progression-free survival when given along with rituximab. This combination therapy also left patients with fewer side effects than the older treatment (a combination of five drugs—rituximab, cyclophosphamide (Cytoxan), doxorubicin (Adriamycin), vincristine and prednisone, collectively called R-CHOP).
There are many recent and current clinical trials for follicular lymphoma. For example, personalised idiotype vaccines have shown promise, particularly as upfront therapy, but have still to prove their efficacy in randomized clinical trials.
Possible options such as anthracycline-containing regimens include ABVD, BEACOPP and CHOP. Results of a trial with COPP/ABV in children suggested positive results with chemotherapy alone are possible without the need for radiation therapy. Optimal chemotherapy is a topic for debate, for example there is evidence of support for treatment with R-CHOP instead of ABVD, results showing high rates (40%) of relapse after 10 years since ABVD chemotherapy. BEACOPP has higher reported toxicity risk.
Current treatment typically includes R-CHOP, which consists of the traditional CHOP, to which rituximab has been added. This regimen has increased the rate of complete response for DLBCL patients, particularly in elderly patients.R-CHOP is a combination of one monoclonal antibody (rituximab), three chemotherapy agents (cyclophosphamide, doxorubicin, vincristine), and one steroid (prednisone). These drugs are administered intravenously, and the regimen is most effective when it is administered multiple times over a period of months. People often receive this type of chemotherapy through a PICC line (peripherally inserted central catheter) in their arm near the elbow or a surgically implanted venous access port. The number of cycles of chemotherapy given depends on the stage of the disease — patients with limited disease typically receive three cycles of chemotherapy, while patients with extensive disease may need to undergo six to eight cycles. A recent approach involves obtaining a PET scan after the completion of two cycles of chemotherapy, to assist the treatment team in making further decisions about the future course of treatment.Older people often have more difficulty tolerating therapy than younger people. Lower intensity regimens have been attempted in this age group.
Radiation therapy is often part of the treatment for DLBCL. It is commonly used after the completion of chemotherapy. Radiation therapy alone is not an effective treatment for this disease.
Breast implant-associated ALCL is a recently recognized lymphoma and definitive management and therapy is under evaluation. However, it appears that removal of the implant, and resection of the capsule around the implant as well as evaluation by medical and surgical oncologists are cornerstones. Still under evaluation is the extent of capsulectomy: partial versus complete capsulectomy; similarly it is not defined the significance of replacement of the implant in the affected breast, or the removal of contralateral implant. Similarly, the value of radiation therapy and chemotherapy are under evaluation.
Currently, there is a drug, LDK378, undergoing Phase III clinical trials at Vanderbilt University that targets ALK positive small cell lung cancer, and has showed clinical promise in its previous clinical trials. Because approximately 70% of ALCL neoplasms are also ALK positive, there is hope that similar highly selective and potent ALK inhibitors may be used in the future to treat ALK positive cases of ALCL.
Multiagent chemotherapy is recommended, but the preferred regimen is controversial, as is consolidative radiotherapy.
Treatment can occasionally consist of "watchful waiting" (e.g. in CLL) or symptomatic treatment (e.g. blood transfusions in MDS). The more aggressive forms of disease require treatment with chemotherapy, radiotherapy, immunotherapy and—in some cases—a bone marrow transplant. The use of rituximab has been established for the treatment of B-cell–derived hematologic malignancies, including follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL).
If treatment has been successful ("complete" or "partial remission"), a person is generally followed up at regular intervals to detect recurrence and monitor for "secondary malignancy" (an uncommon side-effect of some chemotherapy and radiotherapy regimens—the appearance of another form of cancer). In the follow-up, which should be done at pre-determined regular intervals, general anamnesis is combined with complete blood count and determination of lactate dehydrogenase or thymidine kinase in serum.
Chemotherapy with CHOP, infusional EPOCH, hyperCVAD, and CODOX-M/IVAC is often used. The prognosis is generally poor, for example 6 to 7 months and 14 months.
The prognosis varies according with the type of ALCL. During treatment, relapses may occur but these typically remain sensitive to chemotherapy.
Those with ALK positivity have better prognosis than ALK negative ALCL. It has been suggested that ALK-negative anaplastic large-cell lymphomas derive from other T-cell lymphomas that are morphologic mimics of ALCL in a final common pathway of disease progression. Whereas ALK-positive ALCLs are molecularly characterized and can be readily diagnosed, specific immunophenotypic or genetic features to define ALK-negative ALCL are missing and their distinction from other T-cell non-Hodgkin lymphomas (T-NHLs) remains controversial, although promising diagnostic tools for their recognition have been developed and might be helpful to drive appropriate therapeutic protocols.
Systemic ALK+ ALCL 5-year survival: 70–80%.
Systemic ALK- ALCL 5-year survival: 15–45%.
Primary Cutaneous ALCL: Prognosis is good if there is not extensive involvement regardless of whether or not ALK is positive with an approximately 90% 5-year survival rate.
Breast implant-associated ALCL has an excellent prognosis when the lymphoma is confined to the fluid or to the capsule surrounding the breast implant. This tumor can be recurrent and grow as a mass around the implant capsule or can extend to regional lymph nodes if not properly treated.
Median survival is around 10 years, but the range is wide, from less than one year, to more than 20 years. Some patients may never need treatment. The overall survival rate at five years is 72–77%. Recent advances and addition of Rituximab, improved median survival. Recent reports for the period 1986 and 2012 estimates median survival of over 20 years.
mTOR inhibitors :
- Everolimus
- Temsirolimus
mTOR is a kinase enzyme inside the cell that regulates cell growth, proliferation, and survival. mTOR inhibitors lead to cell cycle arrest in the G1 phase and also inhibits tumor angiogenesis by reducing synthesis of VEGF.
A Phase II trial of Evorolimus on relapsed DLBCL patients showed a 30% Overall Response Rate (ORR).
Syk inhibitors include :
- Fostamatinib
- Tamatinib
Chronic signaling through the B-cell receptor appears to contribute to the survival of DLBCL. These survival signals can be blocked by Syk inhibitors. However, since the BCR signaling pathway is not as important to the GCB DLBCL as it is to the ABC subtype, Syk inhibitors may not be effective against GCB DLBCL
The B-cell lymphomas are types of lymphoma affecting B cells. Lymphomas are "blood cancers" in the lymph nodes. They develop more frequently in older adults and in immunocompromised individuals.
B-cell lymphomas include both Hodgkin's lymphomas and most non-Hodgkin lymphomas. They are typically divided into low and high grade, typically corresponding to indolent (slow-growing) lymphomas and aggressive lymphomas, respectively. As a generalisation, indolent lymphomas respond to treatment and are kept under control (in remission) with long-term survival of many years, but are not cured. Aggressive lymphomas usually require intensive treatments, with some having a good prospect for a permanent cure.
Prognosis and treatment depends on the specific type of lymphoma as well as the stage and grade. Treatment includes radiation and chemotherapy. Early-stage indolent B-cell lymphomas can often be treated with radiation alone, with long-term non-recurrence. Early-stage aggressive disease is treated with chemotherapy and often radiation, with a 70-90% cure rate. Late-stage indolent lymphomas are sometimes left untreated and monitored until they progress. Late-stage aggressive disease is treated with chemotherapy, with cure rates of over 70%.
Large B-cell lymphoma arising in HHV8-associated multicentric Castleman's disease is a type of large B-cell lymphoma, recognized in the WHO 2008 classification. It is sometimes called the plasmablastic form of multicentric Castleman disease. It has sometimes been confused with plasmablastic lymphoma in the literature, although that is a dissimilar specific entity. It has variable CD20 expression and unmutated immunoglobulin variable region genes.
Plasmablastic lymphoma is a type of large B-cell lymphoma, recognized in the WHO 2008 classification. It is CD20 negative, and has an immunophenotype that resembles plasma cells. In formal use, lymphomas with plasmablastic immunophenotype such as primary effusion lymphoma, ALK+ large B-cell lymphoma, large B-cell lymphoma arising in HHV8-associated multicentric Castleman's disease and extracavitary HHV–8-positive lymphoma are not part of this category, although sometimes the literature has confused this point.
Castleman disease (CD) is a lymphoproliferative disorder of unknown cause. CD is associated with an increased risk of B-cell lymphoma.
Human herpesvirus 8 (HHV-8), also known as Kaposi sarcoma-associated herpesvirus (KSHV) has been found in some cases of multicentric Castleman disease (MCD). The HHV8 can give rise to an increased number of plasmablast cells within the mantle zone of B-cell follicles. These plasmablasts express IgM-immunoglobulin light chains, most often of lambda subtype. These plasmablasts can give rise to a spectrum of abnormalities including progression to microlymphoma (microscopic clusters of plasmablast cells) or clinical lymphoma.
This type of lymphoma is predominantly seen in acquired immunodeficiencies, including acquired immunodeficiency syndrome (AIDS) but it can also occur in immunosuppression such as with organ transplantation or the elderly. The plasmablasts do not show rearranged immunoglobulin genes, and typically lack EBV infection.
The disease predominantly affects lymph nodes and the spleen, a pattern dissimilar to plasmablastic lymphoma of the oral cavity of AIDS which is not associated with HHV-8 infection. Despite traditional chemotherapy with CHOP (cyclophosphamide, doxorubicin, prednisone, vincristine), and the possible addition of antiviral therapy and inhibition of specific cellular targets including the use of rituximab, the prognosis in this lymphoma has been poor.
This lymphoma subtype has sometimes been confused with plasmablastic lymphoma in the literature, although that is a dissimilar specific entity. Similarly, this subtype is considered distinct from other lymphomas which have a plasmablastic immunophenotype such as primary effusion lymphoma, ALK+ large B-cell lymphoma, and extracavitary HHV–8-positive lymphoma.
HHV8 is also associated with Kaposi's sarcoma and with another subtype of lymphoma, primary effusion lymphoma, previously called body cavity-based lymphoma.
There are numerous kinds of lymphomas involving B cells. The most commonly used classification system is the WHO classification, a convergence of more than one, older classification systems.
One classification system for lymphomas divides the diseases according to the size of the white blood cells that has turned cancerous. The large-cell lymphomas have large cells. A large cell, in this context, has a diameter of 17 to 20 µm. Other groups of lymphomas in this system are the small-cell lymphomas and mixed-cell lymphomas.
Less commonly, a large-cell lymphoma may feature T cells. Anaplastic large-cell lymphoma is an example of a large-cell lymphoma that involves T cells. Of the large-cell T-cell lymphomas, it has the best prognosis.
Primary mediastinal (thymic) large B-cell lymphoma, also called primary mediastinal large B-cell lymphoma (PMLBCL) and mediastinal large B-cell lymphoma, is a distinct type of diffuse large B-cell lymphoma involving the mediastinum, recognized in the WHO 2008 classification.
There is currently minimal therapeutic intervention available for BENTA disease. Patients are closely monitored for infections and for signs of monoclonal or oligoclonal B cell expansion that could indicate B cell malignancy. Splenectomy is unlikely to reduce B cell burden; peripheral blood B cell counts rose significantly in three patients who underwent the procedure. It remains to be determined whether immunosuppressive drugs, including B cell-depleting drugs such as rituximab, could be effective for treating BENTA disease.
When the lesion is localized, it is generally curable. However, long-term survival for children with advanced disease older than 18 months of age is poor despite aggressive multimodal therapy (intensive chemotherapy, surgery, radiation therapy, stem cell transplant, differentiation agent isotretinoin also called 13-"cis"-retinoic acid, and frequently immunotherapy with anti-GD2 monoclonal antibody therapy).
Biologic and genetic characteristics have been identified, which, when added to classic clinical staging, has allowed patient assignment to risk groups for planning treatment intensity. These criteria include the age of the patient, extent of disease spread, microscopic appearance, and genetic features including DNA ploidy and N-myc oncogene amplification (N-myc regulates microRNAs), into low, intermediate, and high risk disease. A recent biology study (COG ANBL00B1) analyzed 2687 neuroblastoma patients and the spectrum of risk assignment was determined: 37% of neuroblastoma cases are low risk, 18% are intermediate risk, and 45% are high risk. (There is some evidence that the high- and low-risk types are caused by different mechanisms, and are not merely two different degrees of expression of the same mechanism.)
The therapies for these different risk categories are very different.
- Low-risk disease can frequently be observed without any treatment at all or cured with surgery alone.
- Intermediate-risk disease is treated with surgery and chemotherapy.
- High-risk neuroblastoma is treated with intensive chemotherapy, surgery, radiation therapy, bone marrow / hematopoietic stem cell transplantation, biological-based therapy with 13-"cis"-retinoic acid (isotretinoin or Accutane) and antibody therapy usually administered with the cytokines GM-CSF and IL-2.
With current treatments, patients with low and intermediate risk disease have an excellent prognosis with cure rates above 90% for low risk and 70–90% for intermediate risk. In contrast, therapy for high-risk neuroblastoma the past two decades resulted in cures only about 30% of the time. The addition of antibody therapy has raised survival rates for high-risk disease significantly. In March 2009 an early analysis of a Children's Oncology Group (COG) study with 226 high-risk patients showed that two years after stem cell transplant 66% of the group randomized to receive ch14.18 antibody with GM-CSF and IL-2 were alive and disease-free compared to only 46% in the group that did not receive the antibody. The randomization was stopped so all patients enrolling on the trial will receive the antibody therapy.
Chemotherapy agents used in combination have been found to be effective against neuroblastoma. Agents commonly used in induction and for stem cell transplant conditioning are platinum compounds (cisplatin, carboplatin), alkylating agents (cyclophosphamide, ifosfamide, melphalan), topoisomerase II inhibitor (etoposide), anthracycline antibiotics (doxorubicin) and vinca alkaloids (vincristine). Some newer regimens include topoisomerase I inhibitors (topotecan and irinotecan) in induction which have been found to be effective against recurrent disease.
Early stage disease is treated surgically. Targeted therapy is available for lung adenocarcinomas with certain mutations. Crizotinib is effective in tumors with fusions involving ALK or ROS1, whereas gefitinib, erlotinib, and afatinib are used in patients whose tumors have mutations in EGFR.