Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is increasing use of immunosuppressants such as mycophenolate mofetil and azathioprine because of their effectiveness. In chronic refractory cases, where immune pathogenesis has been confirmed, the off-label use of the "vinca" alkaloid and chemotherapy agent vincristine may be attempted. However, vincristine has significant side effects and its use in treating ITP must be approached with caution, especially in children.
Thrombopoietin receptor agonists are pharmaceutical agents that stimulate platelet production in the bone marrow. In this, they differ from the previously discussed agents that act by attempting to curtail platelet destruction. Two such products are currently available:
- Romiplostim (trade name Nplate) is a thrombopoiesis stimulating Fc-peptide fusion protein (peptibody) that is administered by subcutaneous injection. Designated an orphan drug in 2003 under United States law, clinical trials demonstrated romiplostim to be effective in treating chronic ITP, especially in relapsed post-splenectomy patients. Romiplostim was approved by the United States Food and Drug Administration (FDA) for long-term treatment of adult chronic ITP on August 22, 2008.
- Eltrombopag (trade name Promacta in the USA, Revolade in the EU) is an orally-administered agent with an effect similar to that of romiplostim. It too has been demonstrated to increase platelet counts and decrease bleeding in a dose-dependent manner. Developed by GlaxoSmithKline and also designated an orphan drug by the FDA, Promacta was approved by the FDA on November 20, 2008.
Side effects of thrombopoietin receptor agonists include headache, joint or muscle pain, dizziness, nausea or vomiting, and an increased risk of blood clots.
Due to the high mortality of untreated TTP, a presumptive diagnosis of TTP is made even when only microangiopathic hemolytic anemia and thrombocytopenia are seen, and therapy is started. Transfusion is contraindicated in thrombotic TTP, as it fuels the coagulopathy. Since the early 1990s, plasmapheresis has become the treatment of choice for TTP. This is an exchange transfusion involving removal of the patient's blood plasma through apheresis and replacement with donor plasma (fresh frozen plasma or cryosupernatant); the procedure must be repeated daily to eliminate the inhibitor and abate the symptoms. If apheresis is not available, fresh frozen plasma can be infused, but the volume that can be given safely is limited due to the danger of fluid overload. Plasma infusion alone is not as beneficial as plasma exchange. Corticosteroids (prednisone or prednisolone) are usually given. Rituximab, a monoclonal antibody aimed at the CD20 molecule on B lymphocytes, may be used on diagnosis; this is thought to kill the B cells and thereby reduce the production of the inhibitor. A stronger recommendation for rituximab exists where TTP does not respond to corticosteroids and plasmapheresis.
Caplacizumab is an alternative option in treating TTP as it has been shown that it induces a faster disease resolution compared with those patient who were on placebo. However, the use of caplacizumab was associated with increase bleeding tendencies in the studied subjects.
Most patients with refractory or relapsing TTP receive additional immunosuppressive therapy, e.g. vincristine, cyclophosphamide, splenectomy or a combination of the above.
Children with Upshaw-Schülman syndrome receive prophylactic plasma every two to three weeks; this maintains adequate levels of functioning ADAMTS13. Some tolerate longer intervals between plasma infusions. Additional plasma infusions may necessary for triggering events, such as surgery; alternatively, the platelet count may be monitored closely around these events with plasma being administered if the count drops.
Measurements of blood levels of lactate dehydrogenase, platelets, and schistocytes are used to monitor disease progression or remission. ADAMTS13 activity and inhibitor levels may be measured during follow-up, but in those without symptoms the use of rituximab is not recommended.
Often, this disease is treated by giving aspirin to inhibit platelet activation, and/or warfarin as an anticoagulant. The goal of the prophylactic treatment with warfarin is to maintain the patient's INR between 2.0 and 3.0. It is not usually done in patients who have had no thrombotic symptoms.
Anticoagulation appears to prevent miscarriage in pregnant women. In pregnancy, low molecular weight heparin and low-dose aspirin are used instead of warfarin because of warfarin's teratogenicity. Women with recurrent miscarriage are often advised to take aspirin and to start low molecular weight heparin treatment after missing a menstrual cycle. In refractory cases plasmapheresis may be used.
The effect of antibiotics in "E. coli" O157:H7 colitis is controversial. Certain antibiotics may stimulate further verotoxin production and thereby increase the risk of HUS. However, there is also tentative evidence that some antibiotics like quinolones may decrease the risk of hemolytic uremic syndrome. In the 1990s a group of pediatricians from the University of Washington used a network of 47 cooperating laboratories in Washington, Oregon, Idaho, and Wyoming to prospectively identify 73 children younger than 10 years of age who had diarrhea caused by "E. coli" O157:H7 The hemolytic–uremic syndrome developed in 5 of the 9 children given antibiotics (56 percent), and in 5 of the 62 children who were not given antibiotics (8 percent, P<0.001).
Treatment of HUS is generally supportive, with dialysis as needed. Platelet transfusion may actually worsen the outcome.
In most children with postdiarrheal HUS, there is a good chance of spontaneous resolution, so observation in a hospital is often all that is necessary, with supportive care such as hemodialysis where indicated. If a diagnosis of STEC-HUS is confirmed, plasmapheresis (plasma exchange) is contraindicated. However, plasmapheresis may be indicated when there is diagnostic uncertainty between HUS and TTP.
There are case reports of experimental treatments with eculizumab, a monoclonal antibody against CD5 that blocks part of the complement system, being used to treat congenital atypical hemolytic uremic syndrome, as well as severe shiga-toxin associated hemolytic uremic syndrome. These have shown promising results. Eculizeumab was approved by the U.S. Food and Drug Administration (FDA) on March 13, 2007 for the treatment of paroxysmal nocturnal hemoglobinuria (PNH), a rare, progressive, and sometimes life-threatening disease characterized by excessive hemolysis; and on September 23, 2011 for the treatment of atypical hemolytic uremic syndrome (aHUS) It was approved by the European Medicines Agency for the treatment of PNH on June 20, 2007, and on November 29, 2011 for the treatment of aHUS. However, of note is the exceedingly high cost of treatment, with one year of the drug costing over $500,000.
Scientists are trying to understand how useful it would be to immunize humans or cattles with vaccines.
Although plasma exchange/infusion (PE/PI) is frequently used, there are no controlled trials of its safety or efficacy in aHUS. Even though PE/PI often partially controls some of the hematological manifestations of aHUS in some patients, its effectiveness has not been demonstrated in terms of inducing total disease remission. PE/PI is associated with significant safety risks, including risk of infection, allergic reactions, thrombosis, loss of vascular access, and poor quality of life. Importantly, terminal complement activation has been shown to be chronically present on the surface of platelets in patients with aHUS who appear to be clinically well while receiving chronic PE/PI.
Before the introduction of eculizumab (INN and USAN, trade name Soliris), a monoclonal antibody that is a first-in-class terminal complement inhibitor, management options for patients with aHUS were extremely limited. Guidelines issued by the European Paediatric Study Group for HUS recommend rapid administration of plasma exchange or plasma infusion (PE/PI), intensively administered daily for 5 days and then with reducing frequency. However, the American Society for Apheresis offers a "weak" recommendation for plasma exchange to treat aHUS, due to the "low" or "very low" quality of evidence supporting its use. Although some patients experienced improvements in red blood cell and platelet counts, plasma therapies generally did not result in full remission.
Discontinuation of heparin is critical in a case of heparin-induced thrombocytopenia (HIT). Beyond that, however, clinicians generally treat to avoid a thrombosis, often by starting patients directly on warfarin. For this reason, patients are usually treated with a direct thrombin inhibitor, such as lepirudin or argatroban, which are approved by the FDA for this use. Other blood thinners sometimes used in this setting that are not FDA-approved for treatment of HIT include bivalirudin and fondaparinux. Platelet transfusions are not routinely used to treat HIT because thrombosis, not bleeding, is the primary problem.
The mortality rate is around 95% for untreated cases, but the prognosis is reasonably favorable (80–90% survival) for patients with idiopathic TTP diagnosed and treated early with plasmapheresis.
Treatment is guided by the severity and specific cause of the disease. Treatment focuses on eliminating the underlying problem, whether that means discontinuing drugs suspected to cause it or treating underlying sepsis. Diagnosis and treatment of serious thrombocytopenia is usually directed by a hematologist. Corticosteroids may be used to increase platelet production. Lithium carbonate or folate may also be used to stimulate platelet production in the bone marrow.
The long-term prognosis for APS is determined mainly by recurrent thrombosis, which may occur in up to 29% of patients, sometimes despite antithrombotic therapy.
In terms of treatment for hyper Igm syndrome there is the use of allogeneic hematopoietic cell transplantation. Additionally anti-microbial therapy, use of granulocyte colony-stimulating factor, immunosuppressants, as well as, other treatments may be needed.
The antibodies in ABO HDN cause anemia due to destruction of fetal red blood cells and jaundice due to the rise in blood levels of bilirubin a by-product of hemoglobin break down. If the anemia is severe, it can be treated with a blood transfusion, however this is rarely needed. On the other hand, neonates have underdeveloped livers that are unable to process large amounts of bilirubin and a poorly developed blood-brain barrier that is unable to block bilirubin from entering the brain.This can result in kernicterus if left unchecked. If the bilirubin level is sufficiently high as to cause worry, it can be lowered via phototherapy in the first instance or an exchange transfusion if severely elevated.
- Phototherapy - Phototherapy is used for cord bilirubin of 3 or higher. Some doctors use it at lower levels while awaiting lab results.
- IVIG - IVIG has been used to successfully treat many cases of HDN. It has been used not only on anti-D, but on anti-E as well. IVIG can be used to reduce the need for exchange transfusion and to shorten the length of phototherapy. The AAP recommends "In isoimmune hemolytic disease, administration of intravenousγ-globulin (0.5-1 g/kg over 2 hours) is recommended if the TSB is rising despite intensive phototherapy or the TSB level is within 2 to 3 mg/dL (34-51 μmol/L) of the exchange level . If necessary, this dose can be repeated in 12 hours (evidence quality B: benefits exceed harms). Intravenous γ-globulin has been shown to reduce the need for exchange transfusions in Rh and ABO hemolytic disease."
- Exchange transfusion - Exchange transfusion is used when bilirubin reaches either the high or medium risk lines on the normogram provided by the American Academy of Pediatrics (Figure 4). Cord bilirubin >4 is also indicative of the need for exchange transfusion.
Vitamin D/Sunlight
Omega-3 Fatty Acids
Probiotics/Microflora
Antioxidants
Treatments for autoimmune disease have traditionally been immunosuppressive, anti-inflammatory, or palliative. Managing inflammation is critical in autoimmune diseases. Non-immunological therapies, such as hormone replacement in Hashimoto's thyroiditis or Type 1 diabetes mellitus treat outcomes of the autoaggressive response, thus these are palliative treatments. Dietary manipulation limits the severity of celiac disease. Steroidal or NSAID treatment limits inflammatory symptoms of many diseases. IVIG is used for CIDP and GBS. Specific immunomodulatory therapies, such as the TNFα antagonists (e.g. etanercept), the B cell depleting agent rituximab, the anti-IL-6 receptor tocilizumab and the costimulation blocker abatacept have been shown to be useful in treating RA. Some of these immunotherapies may be associated with increased risk of adverse effects, such as susceptibility to infection.
Helminthic therapy is an experimental approach that involves inoculation of the patient with specific parasitic intestinal nematodes (helminths). There are currently two closely related treatments available, inoculation with either Necator americanus, commonly known as hookworms, or Trichuris Suis Ova, commonly known as Pig Whipworm Eggs.
T cell vaccination is also being explored as a possible future therapy for autoimmune disorders.
Disease-modifying antirheumatic drugs (DMARDs) are used preventively to reduce the incidence of flares, the progress of the disease, and the need for steroid use; when flares occur, they are treated with corticosteroids. DMARDs commonly in use are antimalarials such as hydroxychloroquine and immunosuppressants (e.g. methotrexate and azathioprine). Hydroxychloroquine is an FDA-approved antimalarial used for constitutional, cutaneous, and articular manifestations. Hydroxychloroquine has relatively few side effects, and there is evidence that it improves survival among people who have SLE.
Cyclophosphamide is used for severe glomerulonephritis or other organ-damaging complications. Mycophenolic acid is also used for treatment of lupus nephritis, but it is not FDA-approved for this indication, and FDA is investigating reports that it may be associated with birth defects when used by pregnant women.
Due to the variety of symptoms and organ system involvement with SLE, its severity in an individual must be assessed in order to successfully treat SLE. Mild or remittent disease may, sometimes, be safely left untreated. If required, nonsteroidal anti-inflammatory drugs and antimalarials may be used. Medications such as prednisone, mycophenolic acid and tacrolimus have been used in the past.
After birth, treatment depends on the severity of the condition, but could include temperature stabilization and monitoring, phototherapy, transfusion with compatible packed red blood, exchange transfusion with a blood type compatible with both the infant and the mother, sodium bicarbonate for correction of acidosis and/or assisted ventilation.
- Phototherapy - Phototherapy is used for cord bilirubin of 3 or higher. Some doctors use it at lower levels while awaiting lab results.
- IVIG - IVIG has been used to successfully treat many cases of HDN. It has been used not only on anti-D, but on anti-E as well. IVIG can be used to reduce the need for exchange transfusion and to shorten the length of phototherapy. The AAP recommends "In isoimmune hemolytic disease, administration of intravenousγ-globulin (0.5-1 g/kg over 2 hours) is recommended if the TSB is rising despite intensive phototherapy or the TSB level is within 2 to 3 mg/dL (34-51 μmol/L) of the exchange level . If necessary, this dose can be repeated in 12 hours (evidence quality B: benefits exceed harms). Intravenous γ-globulin has been shown to reduce the need for exchange transfusions in Rh and ABO hemolytic disease."
- Exchange transfusion - Exchange transfusion is used when bilirubin reaches either the high or medium risk lines on the nonogram provided by the American Academy of Pediatrics (Figure 4). Cord bilirubin >4 is also indicative of the need for exchange transfusion.
In cases of Rho(D) incompatibility, Rho(D) immunoglobulin is given to prevent sensitization. However, there is no comparable immunotherapy available for other blood group incompatibilities.
Early pregnancy
- IVIG - IVIG stands for Intravenous Immunoglobulin. It is used in cases of previous loss, high maternal titers, known aggressive antibodies, and in cases where religion prevents blood transfusion. Ivig can be more effective than IUT alone. Fetal mortality was reduced by 36% in the IVIG and IUT group than in the IUT alone group. IVIG and plasmapheresis together can reduce or eliminate the need for an IUT.
- Plasmapheresis - Plasmapheresis aims to decrease the maternal titer by direct plasma replacement. Plasmapheresis and IVIG together can even be used on women with previously hydropic fetuses and losses.
Mid to late pregnancy
- IUT - Intrauterine Transfusion (IUT) is done either by intraperitoneal transfusion (IPT) or intravenous transfusion (IVT). IVT is preferred over IPT. IUTs are only done until 35 weeks. After that, the risk of an IUT is greater than the risk from post birth transfusion.
- Steroids - Steroids are sometimes given to the mother before IUTs and early delivery to mature the fetal lungs.
- Phenobarbital - Phenobarbital is sometimes given to the mother to help mature the fetal liver and reduce hyperbilirubinemia.
- Early Delivery - Delivery can occur anytime after the age of viability. Emergency delivery due to failed IUT is possible, along with induction of labor at 35–38 weeks.
Rhesus-negative mothers who have had a pregnancy who are pregnant with a rhesus-positive infant are offered Rho(D) immune globulin (RhIG) at 28 weeks during pregnancy, at 34 weeks, and within 48 hours after delivery to prevent sensitization to the D antigen. It works by binding any fetal red blood cells with the D antigen before the mother is able to produce an immune response and form anti-D IgG. A drawback to pre-partum administration of RhIG is that it causes a positive antibody screen when the mother is tested, which can be difficult to distinguish from natural immunological responses that result in antibody production. Without Rho(D) immunoglobulin, the risk of isoimmunization is approximately 17%; with proper administration the risk is reduced to less than 0.1-0.2%.
No specific cure is known. Treatment is largely supportive. Nonsteroidal anti-inflammatory drugs (NSAIDs) are indicated for tender lymph nodes and fever, and corticosteroids are useful in severe extranodal or generalized disease.
Symptomatic measures aimed at relieving the distressing local and systemic complaints have been described as the main line of management of KFD. Analgesics, antipyretics, NSAIDs, and corticosteroids have been used. If the clinical course is more severe, with multiple flares of bulky enlarged cervical lymph nodes and fever, then a low-dose corticosteroid treatment has been suggested.
It is important to recognize early that these drugs are causing DIL like symptoms and discontinue use of the drug. Symptoms of drug-induced lupus erythematosus generally disappear days to weeks after medication use is discontinued. Non-steroidal anti-inflammatory drugs (NSAIDs) will quicken the healing process. Corticosteroids may be used if more severe symptoms of DIL are present.
The major mainstay of treatment for GPS is plasmapheresis, a procedure in which the affected person's blood is sent through a centrifuge and the various components separated based on weight. The plasma, clear liquid part of the blood, contains the anti-GBM antibodies that attack the affected person's lungs and kidneys and is filtered out. The other parts of the blood, that is, the red blood cells, white blood cells, and platelets, are recycled and given intravenously as a replacement fluid. Most individuals affected by the disease also need to be treated with immunosuppressant drugs, especially cyclophosphamide, prednisone, and rituximab, to prevent the formation of new anti-GBM antibodies so as to prevent further damage to the kidneys and lungs. Other, less toxic immunosuppressants such as azathioprine may be used to maintain remission.
Treatment of acute proliferative glomerulonephritis consists of blood pressure (BP) control:also a renal biopsy may be needed to be performed at some point. A low-sodium diet may be needed when hypertension is present. In individuals with oliguric acute kidney injury, the amount of potassium should be controlled.
It is unclear whether or not acute proliferative glomerulonephritis (i.e., poststreptococcal glomerulonephritis) can be prevented with early prophylactic antibiotic therapy, with some authorities arguing that antibiotics can prevent development of acute proliferative glomerulonephritis, while others reject that antibiotics can prevent acute proliferative glomerulonephritis.
Corticosteroids are administered through IV or orally. They cause lymphocytopenia, a condition where white blood cell levels are abnormally low. Corticosteroids cause white blood cell death, lowering their numbers throughout the body. They also cause white blood cells to recirculate away from the area of damage (the retina). This minimizes damage caused by the antibodies produced by the white blood cells. Often, this is treatment is combined with plasmapheresis. Instead of treating the plasma and blood cells, they are replaced with a healthy donor mixture. Patients who respond positively show improved visual fields and an almost complete disappearance of anti-retinal antibodies.