Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The drug tafamidis has completed a phase II/III 18-month-long placebo controlled clinical trial
and these results in combination with an 18-month follow-on study demonstrated that Tafamidis or Vyndaqel slowed progression of FAP, particularly when administered to patients early in the course of FAP. This drug is now approved by the European Medicines Agency.
The US Food and Drug Administration's Peripheral and Central Nervous System Drugs Advisory Committee rejected the drug in June 2012, in a 13-4 vote. The committee stated that there was not enough evidence supporting efficacy of the drug, and requested additional clinical trials.
The most effective treatment is autologous bone marrow transplants with stem cell rescues. However many patients are too weak to tolerate this approach.
Other treatments can involve application of chemotherapy similar to that used in multiple myeloma. A combination of melphalan and dexamethasone has been found effective in those who are ineligible for stem cell transplantation, and a combination of bortezomib and dexamethasone is now in widespread clinical use.
In the absence of a liver transplant, FAP is invariably fatal, usually within a decade. The disadvantage of liver transplantation is that approximately 10% of the subjects die from the procedure or complications resulting from the procedure, which is a form of gene therapy wherein the liver expressing wild type and mutant TTR is replaced by a liver only expressing wild type TTR. Moreover, transplanted patients must take immune suppressants (drugs) for the remainder of their life, which can lead to additional complications. In late 2011, the European Medicines Agency approved the transthyretin kinetic stabilizer Tafamidis or Vyndaqel discovered by Jeffery W. Kelly and developed by FoldRx pharmaceuticals (acquired by Pfizer in 2010) for the treatment of FAP based on clinical trial data. Tafamidis (20 mg once daily) slowed the progression of FAP over a 36-month period and importantly reversed the weight loss and muscle wasting associated with disease progression.
Liver transplantation has proven to be effective for ATTR familial amyloidosis due to Val30Met mutation.
Alternatively, a European Medicines Agency approved drug Tafamidis or Vyndaqel now exists which stabilizes transthyretin tetramers comprising wild type and different mutant subunits against amyloidogenesis halting the progression of peripheral neuropathy and autonomic nervous system dysfunction.
Currently there are two ongoing clinical trials undergoing recruitment in the United States and worldwide to evaluate investigational medicines that could possibly treat TTR.
There is no standard treatment for LCDD. High-dose melphalan in conjunction with autologous stem cell transplantation has been used in some patients. A regimen of bortezomib and dexamethasone has also been examined.
Treatment depends on the type of amyloidosis that is present. Treatment with high dose melphalan, a chemotherapy agent, followed by stem cell transplantation has showed promise in early studies and is recommended for stage I and II AL amyloidosis. However, only 20–25% of people are eligible for stem cell transplant. Chemotherapy and steroids, with melphalan plus dexamethasone, is mainstay treatment in AL people not eligible for transplant.
In AA, symptoms may improve if the underlying condition is treated; eprodisate has been shown to slow renal impairment by inhibiting polymerization of amyloid fibrils.
In ATTR, liver transplant is a curative therapy because mutated transthyretin which forms amyloids is produced in the liver.
People affected by amyloidosis are supported by multiple organizations, including the Amyloidosis Foundation, Amyloidosis Support Groups Inc., and Amyloidosis Australia, Inc.
No drug has been shown to be able to arrest or slow down the process of this condition. There is promise that two drugs, tafamidis and diflunisal, may improve the outlook, since they were demonstrated in randomized clinical trials to benefit patient affected by the related condition FAP-1 otherwise known as transthyretin-related hereditary amyloidosis. Permanent pacing can be employed in cases of symptomatic slow heart rate (bradycardia). Heart failure medications can be used to treat symptoms of difficulty breathing and congestion.
Median survival for patients diagnosed with AL amyloidosis was 13 months in the early 1990s, but had improved to c. 40 months a decade later.
Since interleukin 1β plays a central role in the pathogenesis of the disease, therapy typically targets this cytokine in the form of monoclonal antibodies (such as canakinumab), binding proteins/traps (such as rilonacept), or interleukin 1 receptor antagonists (such as anakinra). These therapies are generally effective in alleviating symptoms and substantially reducing levels of inflammatory indices. Case reports suggest that thalidomide and the anti-IL-6 receptor antibody tocilizumab may also be effective.
RS3PE responds excellently to low dose corticosteroids, with sustained and often complete remission. Non-steroidal anti-inflammatory drugs (NSAIDs) have also been used. Hydroxychloroquine has proven effective in some cases.
Attacks are self-limiting, and require analgesia and NSAIDs (such as diclofenac). Colchicine, a drug otherwise mainly used in gout, decreases attack frequency in FMF patients. The exact way in which colchicine suppresses attacks is unclear. While this agent is not without side effects (such as abdominal pain and muscle pains), it may markedly improve quality of life in patients. The dosage is typically 1–2 mg a day. Development of amyloidosis is delayed with colchicine treatment. Interferon is being studied as a therapeutic modality. Some advise discontinuation of colchicine before and during pregnancy, but the data are inconsistent, and others feel it is safe to take colchicine during pregnancy.
Approximately 5–10% of FMF cases are resistant to colchicine therapy alone. In these cases, adding anakinra to the daily colchicine regimen has been successful.
Treatment includes supportive care with analgesics and anti-inflammatory agents. Exercise should be limited as it increases pain and extends the area of infarction. Symptoms usually resolve in weeks to months, but fifty percent of sufferers will experience relapse in either leg.
Treatment consists of oral bicarbonate supplementation. However, this will increase urinary bicarbonate wasting and may well promote a bicarbonate . The amount of bicarbonate given may have to be very large to stay ahead of the urinary losses. Correction with oral bicarbonate may exacerbate urinary potassium losses and precipitate hypokalemia. As with dRTA, reversal of the chronic acidosis should reverse bone demineralization.
Thiazide diuretics can also be used as treatment by making use of contraction alkalosis caused by them.
There has too little experience on the treatment of LECT2 amyloidosis to establish recommendations other than offering methods to support kidney function and dialysis. Nonetheless, it is important to accurately diagnose ALECT2-based amyloid disease in order to avoid treatment for other forms of amyloidosis.
Fludarabine is a drug normally used to treat hematological malignancies and acts as an immunosuppressant. It has been shown to significantly improve conditions in neuropathy patients, but because of the lack of studies it is not used regularly. There is also a danger of potential toxicity as the treatment takes a year to stabilize the patient.
Cyclophosphamide is a drug often used in the treatment of lymphomas and works by slowing or stopping cell growth. It also works as an immunosuppressant by decreasing the body’s immune response to various diseases and conditions. This drug has been found to make significant improvements in people with anti-MAG neuropathy by relieving sensory loss and helping to improve quality of life in a few short months. There is, however, a risk of cancer because of this treatment and is therefore not used on a regular basis.
Although not based on a human clinical trial, the only currently accepted disease-modifying therapeutic strategy available for familial amyloid cardiomyopathy is a combined liver and heart transplant. Treatments aimed at symptom relief are available, and include diuretics, pacemakers, and arrhythmia management. Thus, Senile systemic amyloidosis and familial amyloid polyneuropathy are often treatable diseases that are misdiagnosed.
In 2013, the European Medicines Agency approved the drug tafamidis (Vyndaqel) to slow the progression of familial amyloid polyneuropathy, a related disease caused by TTR aggregation that first presents as an autonomic and/or peripheral neuropathy (later progressing to a cardiomyopathy).
Treating proteinuria mainly needs proper diagnosis of the cause.
The most common cause is diabetic nephropathy; in this case, proper glycemic control may slow the progression. Medical management consists of angiotensin converting enzyme (ACE) inhibitors, which are typically first-line therapy for proteinuria. In patients whose proteinuria is not controlled with ACE inhibitors, the addition of an aldosterone antagonist (i.e., spironolactone) or angiotensin receptor blocker (ARB) may further reduce protein loss. Caution must be used if these agents are added to ACE inhibitor therapy due to the risk of hyperkalemia.
Proteinuria secondary to autoimmune disease should be treated with steroids or steroid-sparing agent plus the use of ACE inhibitors.
As the causes of local gigantism are varied, treatment depends on the particular condition. Treatment may range from antibiotics and other medical therapy, to surgery in order to correct the anatomical anomaly.
Kiacta - (eprodisate disodium) is in 2015 being evaluated as a protector of renal function in AA amyloidosis. Kiacta, inhibits the formation and deposition of the amyloid A fibrils into the tissues.
Treatment is based on the underlying cause, if any. Where the likely underlying condition is known, treatment of this condition is indicated treated to reduce progression of the disease and symptoms. For cases without those conditions, there is only symptomatic treatment.
Familial renal amyloidosis (or familial visceral amyloidosis, or hereditary amyloid nephropathy) is a form of amyloidosis primarily presenting in the kidney.
It is associated most commonly with congenital mutations in the fibrinogen alpha chain and classified as a dysfibrinogenemia (see Hereditary Fibrinogen Aα-Chain Amyloidosis). and, less commonly, with congenital mutations in apolipoprotein A1 and lysozyme.
It is also known as "Ostertag" type, after B. Ostertag, who characterized it in 1932 and 1950.
The median time to progression to end stage renal disease is 2.7 years. After 5 years, about 37% of patients with LCDD are alive and do not have end stage renal disease.
In a healthy individual, the median plasma concentration of SAA is 3 mg per liter. This can increase to over 2000 mg per liter during an acute phase response and a sustained overproduction of SAA is required for the creation of the AA deposits that define AA amyloidosis. High levels of SAA, however, is not a sufficient condition for the development of systemic AA amyloidosis and it remains unclear what triggers the accumulation of AA.
The AA protein is mainly deposited in the liver, spleen and kidney, and AA amyloidosis can lead to nephrotic syndrome and ESRD. Natural history studies show, however, that it is the renal involvement that drives the progression of the disease. In general, old age, reduced serum albumin concentration, end stage renal failure, and sustained elevated SAA concentration are all associated with poor prognosis.
There are currently no approved treatments for systemic AA amyloidosis. The current standard of care includes treatments for the underlying inflammatory disease with anti-inflammatory drugs, immunosuppressive agents or biologics. AA amyloidosis patients are also receiving treatments to slow down the decline of their renal function, such as angiotensin II receptor blockers or angiotensin converting enzyme inhibitors.
The aim in cerebral amyloid angiopathy is to treat the symptoms, as there is no current cure. Physical and/or speech therapy may be helpful in the management of this condition.