Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Antibiotic-associated diarrhea (AAD) results from an imbalance in the colonic microbiota caused by antibiotic therapy. Microbiota alteration changes carbohydrate metabolism with decreased short-chain fatty acid absorption and an osmotic diarrhea as a result. Another consequence of antibiotic therapy leading to diarrhea is overgrowth of potentially pathogenic organisms such as "Clostridium difficile". It is defined as frequent loose and watery stools with no other complications.
Meta-analyses have concluded that probiotics may protect against antibiotic-associated diarrhea in both children and adults. Evidence is insufficient, however, regarding an effect on rates of "Clostridium difficile" colitis.
However, citing conflicting data in the studies, other sources claim that the use of probiotics has failed thus far to meet the standard of medical care required for evidence-based medicine. Demonstration of the efficacy of probiotics is needed by randomized, double blind, placebo-controlled trials.
Efficacy of probiotic AAD prevention is dependent on the probiotic strain(s) used and on the dosage. Up to a 50% reduction of AAD occurrence has been found. No side-effects have been reported in any of these studies. Caution should, however, be exercised when administering probiotic supplements to immunocompromised individuals or patients who have a compromised intestinal barrier because of the risk of an infection caused by the probiotic supplements.
"Clostridium difficile", also known more commonly as "C. diff", is known to account for 10 to 20 percent of antibiotic-associated diarrhea cases. The reasoning for this, is that the antibiotics administered for the treatment of certain diseases processes such as inflammatory colitis also inadvertently kills a large portion of the gut flora, the normal flora that is usually present within the bowel. With this lower amount of "healthy" bacteria present, the overgrowth of "C. diff" is then responsible "for elaborating the enterotoxin".
Once a nickel allergy is detected, the best treatment is avoidance of nickel-releasing items. It is important to know the main items that can cause nickel allergy, which may be remembered using the mnemonic "BE NICKEL AWARE". The top 13 categories that contain nickel include beauty accessories, eyeglasses, money, cigarettes, clothes, kitchen and household, electronics and office equipment, metal utensils, aliment, jewelry, batteries, orthodontic and dental appliances, and medical equipment. Other than strict avoidance of items that release free nickel, there are other treatment options for reduction of exposure. The first step is to limit friction between skin and metallic items. Susceptible people may try to limit sweating while wearing nickel items, to reduce nickel release and thus decrease chances for developing sensitization and/or allergy. Another option is to shield electronics, metal devices, and tools with fabric, plastic, or acrylic coverings. Dermatological application tests has shown that barrier creams effectively prevent the symptoms of nickel allergy, such as the Nidiesque™.
There are test kits that can be very helpful to check for nickel release from items prior to purchasing. The ACDS providers can give a guidance list of safe items. In addition to avoidance, healthcare providers may prescribe additional creams or medications to help relieve the skin reaction.
Nickel has wide utility of application in manufactured metals, because it is both strong and malleable, leading to ubiquitous presence and the potential for consumers to be in contact with it daily. However, for those that have the rash of allergic contact dermatitis (ACD) due to a nickel allergy, it can be a challenge to avoid. Foods, common kitchen utensils, cell phones, jewelry and many other items may contain nickel and be a source of irritation due to the allergic reaction caused by the absorption of free released nickel through direct and prolonged contact. The most appropriate measure for nickel allergic persons is to prevent contact with the allergen.
In 2011, researchers showed that applying a thin layer of glycerine emollient containing nanoparticles of either calcium carbonate or calcium phosphate on an isolated piece of pig skin (in vitro) and on the skin of mice (in vivo) prevents the penetration of nickel ions into the skin. The nanoparticles capture nickel ions by cation exchange, and remain on the surface of the skin, allowing them to be removed by simple washing with water. Approximately 11-fold fewer nanoparticles by mass are required to achieve the same efficacy as the chelating agent ethylenediamine tetraacetic acid. Using nanoparticles with diameters smaller than 500 nm in topical creams may be an effective way to limit the exposure to metal ions that can cause skin irritation'.
Pre-emptive avoidance strategies (PEAS) might ultimately lower the sensitization rates of children who would suffer from ACD In an expert review of clinical immunology from "Taylor & Francis Online", it is theorized that prevention of exposure to nickel early on could reduce the number of those that are sensitive to nickel by one-quarter to one-third. Identification of the many sources of nickel is vital to understanding the nickel sensitization story, food like chocolate and fish, zippers, buttons, cells phones and even orthodontic braces and eyeglass frames might contain nickel. Items that contain sentimental value (heirlooms, wedding rings) could be treated with an enamel or rhodium plating.
Sensitized individuals may check product labels or contact the manufacturer or retailer regarding possible nickel content. The Dermatitis Academy has created an educational website to provide more information about nickel, including information about prevention, exposure, sources, and general information about nickel allergy. These resources provide guidance in a prevention initiative for children worldwide.
Wallerian degeneration is a process that results when a nerve fiber is cut or crushed and the part of the axon distal to the injury (i.e. farther from the neuron's cell body) degenerates. This is also known as anterograde or orthograde degeneration. A related process known as 'Wallerian-like degeneration' occurs in many neurodegenerative diseases, especially those where axonal transport is impaired. Primary culture studies suggest that a failure to deliver sufficient quantities of the essential axonal protein NMNAT2 is a key initiating event.
Wallerian degeneration occurs after axonal injury in both the peripheral nervous system (PNS) and central nervous system (CNS). It occurs in the axon stump distal to a site of injury and usually begins within 24–36 hours of a lesion. Prior to degeneration, distal axon stumps tend to remain electrically excitable. After injury, the axonal skeleton disintegrates, and the axonal membrane breaks apart. The axonal degeneration is followed by degradation of the myelin sheath and infiltration by macrophages. The macrophages, accompanied by Schwann cells, serve to clear the debris from the degeneration.
Schwann cells respond to loss of axons by extrusion of their myelin sheaths, downregulation of myelin genes, dedifferentiation and proliferation. They finally align in tubes (Büngner bands) and express surface molecules that guide regenerating fibers. Within 4 days of the injury, the distal end of the portion of the nerve fiber proximal to the lesion sends out sprouts towards those tubes and these sprouts are attracted by growth factors produced by Schwann cells in the tubes. If a sprout reaches the tube, it grows into it and advances about 1 mm per day, eventually reaching and reinnervating the target tissue. If the sprouts cannot reach the tube, for instance because the gap is too wide or scar tissue has formed, surgery can help to guide the sprouts into the tubes. Regeneration is efficient in the PNS, with near complete recovery in case of lesions that occur close to the distal nerve terminal. However recovery is hardly observed at all in the spinal cord. One crucial difference is that in the CNS, including the spinal cord, myelin sheaths are produced by oligodendrocytes and not by Schwann cells.
Wallerian degeneration is named after Augustus Volney Waller. Waller experimented on frogs in 1850, by severing their glossopharyngeal and hypoglossal nerves. He then observed the distal nerves from the site of injury,
which were separated from their cell bodies in the brain stem.
Waller described the disintegration of myelin, which he referred to as "medulla", into separate particles of various sizes. The degenerated axons formed droplets that could be stained, thus allowing studies of the course of individual nerve fibres.