Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatments exist for the various symptoms associated with XXXY syndrome. Testosterone therapy, which is giving affected individuals doses of testosterone on a regular basis, has been shown to reduce aggressive behavior in these patients. But, this therapy has also been associated with negative side effects: worsening of behavior, and osteoporosis. Not all individuals are applicable for testosterone therapy, as the best results are often achieved when dosage begins at the initiation of puberty, and these individuals are often diagnosed at a later age, or not at all. Testosterone therapy has been shown to have no positive effect on fertility.
Consideration of the psychological phenotype of individuals with XXXY should be taken into account when treating these patients, because these traits affect compliance with treatments. When caught early, Taurodontism can be treated with a root canal and is often successful. Appropriate planning to avoid Taurodontism is possible, but this syndrome must be diagnosed early, which is not common. Taurodontism can often be detected as a symptom of XXXY syndrome before other characteristics develop, and can be an early indicator for it. Surgical treatments to correct joint problems, such as hip dysplasia are common, and are often successful alongside physiotherapy.
Those with XXXY syndrome can also attend speech therapy. This form of therapy helps patients to understand and produce more complex language. Those with XXXY syndrome tend to experience more severe speech delays, so this form of treatment can be very beneficial to them, and can help them to communicate better with other people.
Since hypotonia is common in those with this syndrome, physical therapy can also be helpful. This form of therapy may help these individuals develop muscle tone, and increase balance and coordination.
The genetic variation is irreversible, however, individuals who want to look more masculine can take testosterone. Treating adolescents with implants of controlled release testosterone has shown good results when appropriately monitored. Hormone therapy is also useful in preventing the onset of osteoporosis.
Often individuals that have noticeable breast tissue or hypogonadism experience depression and/or social anxiety because they are outside of social norms. An academic term for this is psychosocial morbidity. At least one study indicates that planned and timed support should be provided for young men with Klinefelter syndrome to ameliorate current poor psychosocial outcomes. The surgical removal of the breasts may be considered for both the psychological reasons and to reduce the risk of breast cancer.
The use of behavioral therapy can mitigate any language disorders, difficulties at school and socialization. An approach by occupational therapy is useful in children, especially those who have dyspraxia.
At the present time, there is no specific treatment that can undo any chromosomal abnormality, nor the genetic pattern seen in people with idic(15). The extra chromosomal material in those affected was present at or shortly after conception, and its effects on brain development began taking place long before the child was born. Therapies are available to help address many of the symptoms associated with idic(15). Physical, occupational, and speech therapies along with special education techniques can stimulate children with idic(15) to develop to their full potential.
In terms of medical management of the symptoms associated with Chromosome 15q11.2-q13.1 Duplication Syndrome, families should be aware that individuals with chromosome 15 duplications may tolerate medications differently and may be more sensitive to side effects for some classes of medications, such as the serotonin reuptake inhibitor type medications (SSRI).
Thus, these should be used with caution and any new medication should be instituted in a controlled setting, with slow titration of levels and with a clear endpoint as to what the expected outcome for treatment is.
There is an increased risk of sudden, unexpected death among children and adults with this syndrome. The full cause is not yet understood but it is generally attributed to SUDEP (Sudden Unexplained Death in Epilepsy).
By 2010 over 100 successful pregnancies have been reported using IVF technology with surgically removed sperm material from males with Klinefelter syndrome. Microdissection testicular sperm extraction in adult men with Klinefelter syndrome reported success rates of up to 45%.
When surgery is indicated, the choice of treatment is based on the classification. Table 4 shows the treatment of cleft hand divided into the classification of Manske and Halikis.
Techniques described by Ueba, Miura and Komada and the procedure of Snow-Littler are guidelines; since clinical and anatomical presentation within the types differ, the actual treatment is based on the individual abnormality.
Table 4: Treatment based on the classification of Manske and Halikis
The timing of surgical interventions is debatable. Parents have to decide about their child in a very vulnerable time of their parenthood. Indications for early treatment are progressive deformities, such as syndactyly between index and thumb or transverse bones between the digital rays. Other surgical interventions are less urgent and can wait for 1 or 2 years.
There is no known cure to BVVL however a Dutch group have reported the first promising attempt at treatment of the disorder with high doses of riboflavin. This Riboflavin protocol seems to be beneficial in almost all cases. Specialist medical advice is of course essential to ensure the protocol is understood and followed correctly.
Patients will almost certainly require additional symptomatic treatment and supportive care. This must be specifically customized to the needs of the individual but could include mobility aids, hearing aids or cochlear implants, vision aids, gastrostomy feeding and assisted ventilation, while steroids may or may not help patients.
The first report of BVVL syndrome in Japanese literature was of a woman that had BVVL and showed improvement after such treatments. The patient was a sixty-year-old woman who had symptoms such as sensorineural deafness, weakness, and atrophy since she was 15 years old. Around the age of 49 the patient was officially diagnosed with BVVL, incubated, and then attached to a respirator to improve her CO2 narcosis. After the treatments, the patient still required respiratory assistance during sleep; however, the patient no longer needed assistance by a respirator during the daytime.
At present, treatment for distal 18q- is symptomatic, meaning the focus is on treating the signs and symptoms of the conditions as they arise. To ensure early diagnosis and treatment, people with distal 18q- are suggested to undergo routine screenings for thyroid, hearing, and vision problems.
Both patients with idic(15) and int dup(15) (together, Dup15q syndrome) feature a distinctive electroencephalography (EEG) signature or biomarker in the form of high amplitude spontaneous beta frequency (12–30 Hz) oscillations. This EEG signature was first noted as a qualitative pattern in clinical EEG readings and was later described quantitatively by researchers at the University of California, Los Angeles and their collaborators within the network of national Dup15q clinics. This group of researchers found that beta activity in children with Dup15q syndrome is significantly greater than that observed in (1) healthy, typically developing children of the same age and (2) children of the same age and IQ with autism not caused by a known genetic disorder (i.e., nonsyndromic ASD). The EEG signature appears almost identical to beta oscillations induced by benzodiazepine drugs that modulate GABA receptors, suggesting that the signature is driven by overexpression of duplicated GABA receptor genes "GABRA5", "GABRB3", and "GABRG3" found on 15q11.2-q13.1. Treatment monitoring and identification of molecular disease mechanisms may be facilitated by this biomarker.
In mild cases, individuals with XXXY syndrome may lead a relatively good life. These individuals may face difficulties in communicating with others due to their language-based deficits. These deficits may make forming bonds with others difficult, but fulfilling relationships with others are still achievable. Those with higher scores in adaptive functioning are likely to have higher quality of life because they can be independent.
49,XXXXY syndrome is an extremely rare aneuploidic sex chromosomal abnormality. It occurs in approximately 1 out of 85,000 to 100,000 males.
There are several types of treatment for congenital trigger thumb, conservative and surgical.
Surgical treatment should be considered when the patient has a trigger thumb bilaterally and when the patient has a severe trigger thumb. Severe is defined as when the thumb is locked so that the thumb cannot be flexed or extended either passively or actively. Surgical treatment should also be considered when observation and/or splint therapy hasn’t achieved sufficient results after 49 months. Unlike the surgical treatment given for adults, which is unambiguously a surgical release of the A1 pulley of the thumb, the optimum surgical treatment for infants has not yet been discerned. In case of infants, research has shown that only in 15% of the cases A1 pulley release alone is sufficient. In most of the cases there was an additional annular pulley structure distal to the A1 to be released resolving the triggering: the so-called Av pulley or variable pulley. Therefore infants and adults need to be treated differently as the main problem is different.
49,XXXXX, also known as pentasomy X, penta X, or XXXXX syndrome, is a chromosomal aneuploidy where females have five X chromosomes rather than the normal two. It is unclear exactly how rare it is, but it appears to affect fewer than 1 in 100,000 women.
The most effective anti-epileptic medication for JME is valproic acid (Depakote). Women are often started on alternative medications due to valproic acid's high incidence of fetal malformations. Lamotrigine, levetiracetam, topiramate, and zonisamide are alternative anti-epileptic medications with less frequent incidence of pregnancy related complications, and they are often used first in females of childbearing age. Carbamazepine may aggravate primary generalized seizure disorders such as JME. Treatment is lifelong. Patients should be warned to avoid sleep deprivation.
Exposure of spermatozoa to lifestyle, environmental and/or occupational hazards may increase the risk of aneuploidy. Cigarette smoke is a known aneugen (aneuploidy inducing agent). It is associated with increases in aneuploidy ranging from 1.5 to 3.0-fold. Other studies indicate factors such as alcohol consumption, occupational exposure to benzene, and exposure to the insecticides fenvalerate and carbaryl also increase aneuploidy.
Aneuploidy is often fatal, but in this case there is "X-inactivation" where the effect of the additional gene dosage due to the presence of extra X chromosomes is greatly reduced.
Much like Down syndrome, the mental effects of 49,XXXXY syndrome vary. Impaired speech and behavioral problems are typical. Those with 49,XXXXY syndrome tend to exhibit infantile secondary sex characteristics with sterility in adulthood and have some skeletal anomalies. Skeletal anomalies include:
- Genu valgum
- Pes cavus
- Fifth finger clinodactyly
The effects also include:
- Cleft palate
- Club feet
- Respiratory conditions
- Short or/and broad neck
- Low birth weight
- Hyperextensible joints
- Short stature
- Narrow shoulders
- Coarse features in older age
- Hypertelorism
- Epicanthal folds
- Prognathism
- Gynecomastia (rare)
- Muscular hypotonia
- Hypoplastic genitalia
- Cryptorchidism
- Congenital heart defects
- A very round face in infancy
Polar body diagnosis (PBD) can be use to detect maternally derived chromosomal aneuploidies as well as translocations in oocytes. The advantage of PBD over PGD is that it can be accomplished in a short amount of time. This is accomplished through zona drilling or laser drilling.
The main characteristics of 49,XXXXX are intellectual disability, short stature and craniofacial abnormalities. Other physical traits include the following:
- Small head
- Ear abnormalities
- Widely spaced eyes with upward slanting palpebral fissures and epicanthal folds
- Short neck
- Broad nose with a depressed nasal bridge
- Hyperextension of the elbows
- Dental abnormalities and cleft palate
- Clinodactyly of the 5th finger
- Deformities of the feet
- Heart defects
Edwards syndrome, also known as trisomy 18, is a genetic disorder caused by the presence of all, or part of a third copy of chromosome 18. Many parts of the body are affected. Babies are often born small and have heart defects. Other features include a small head, small jaw, clenched fists with overlapping fingers, and severe intellectual disability.
Most cases of Edwards syndrome occur due to problems during the formation of the reproductive cells or during early development. The rate of disease increases with the mother's age. Rarely cases may be inherited from a person's parents. Occasionally not all cells have the extra chromosome, known as mosaic trisomy, and symptoms in these cases may be less severe. Ultrasound can increase suspicion for the condition, which can be confirmed by amniocentesis.
Treatment is supportive. After having one child with the condition, the risk of having a second is typically around one percent. It is the second-most frequent condition due to a third chromosome at birth, after Down syndrome.
Edwards syndrome occurs in around one in 5,000 live births. Some studies suggest that more babies that survive to birth are female. Many of those affected die before birth. Survival beyond a year of life is around 5-25%. It is named after John Hilton Edwards, who first described the syndrome in 1960.
For most balance and gait disorders, some form of displacement exercise is thought helpful (for example walking, jogging, or bicycling but not on a treadmill or stationary bicycle). This has not been well-studied in MdDS. Medications that suppress the nerves and brain circuits involved in balance (for example, the benzodiazepine clonazepam) have been noted to help and can lower symptoms, but it is not a cure. It is not known whether medication that suppress symptoms prolongs symptom duration or not. Vestibular therapy has not proved to be effective in treating MdDS.
Additional research is being undertaken into the neurological nature of this syndrome through imaging studies. The disorder remains incurable and permanent if the symptoms do not remit in a short period of time.
Distal 18q- causes a wide range of medical and developmental concerns, with significant variation in severity due to the variation in breakpoints reported in individuals with distal 18q-. Current research is focused on establishing genotype-phenotype correlations to enable predictive genotyping.
Management has three components: interventions before delivery, timing and place of delivery, and therapy after delivery.
In some cases, fetal therapy is available for the underlying condition; this may help to limit the severity of pulmonary hypoplasia. In exceptional cases, fetal therapy may include fetal surgery.
A 1992 case report of a baby with a sacrococcygeal teratoma (SCT) reported that the SCT had obstructed the outlet of the urinary bladder causing the bladder to rupture in utero and fill the baby's abdomen with urine (a form of ascites). The outcome was good. The baby had normal kidneys and lungs, leading the authors to conclude that obstruction occurred late in the pregnancy and to suggest that the rupture may have protected the baby from the usual complications of such an obstruction. Subsequent to this report, use of a vesicoamniotic shunting procedure (VASP) has been attempted, with limited success.
Often, a baby with a high risk of pulmonary hypoplasia will have a planned delivery in a specialty hospital such as (in the United States) a tertiary referral hospital with a level 3 neonatal intensive-care unit. The baby may require immediate advanced resuscitation and therapy.
Early delivery may be required in order to rescue the fetus from an underlying condition that is causing pulmonary hypoplasia. However, pulmonary hypoplasia increases the risks associated with preterm birth, because once delivered the baby requires adequate lung capacity to sustain life. The decision whether to deliver early includes a careful assessment of the extent to which delaying delivery may increase or decrease the pulmonary hypoplasia. It is a choice between expectant management and active management. An example is congenital cystic adenomatoid malformation with hydrops; impending heart failure may require a preterm delivery. Severe oligohydramnios of early onset and long duration, as can occur with early preterm rupture of membranes, can cause increasingly severe PH; if delivery is postponed by many weeks, PH can become so severe that it results in neonatal death.
After delivery, most affected babies will require supplemental oxygen. Some severely affected babies may be saved with extracorporeal membrane oxygenation (ECMO). Not all specialty hospitals have ECMO, and ECMO is considered the therapy of last resort for pulmonary insufficiency. An alternative to ECMO is high-frequency oscillatory ventilation.
In 2008/2009, 495 diagnoses of Edwards syndrome (trisomy 18) were made in England and Wales, 92% of which were made prenatally, resulting in 339 abortions, 49 stillbirths/miscarriages/fetal deaths, 72 unknown outcomes, and 35 live births. Because about 3% of cases with unknown outcomes are likely to result in a live birth, the total number of live births is estimated to be 37 (2008/09 data are provisional). Major causes of death include apnea and heart abnormalities. It is impossible to predict an exact prognosis during pregnancy or the neonatal period. Half of the infants with this condition do not survive beyond the first week of life. The median lifespan is five to 15 days. About 8-12% of infants survive longer than 1 year. One percent of children live to age 10, though a retrospective Canadian study of 254 children with trisomy 18 demonstrated ten year survival of 9.8%.
The clinical course of BVVL can vary from one patient to another. There have been cases with progressive deterioration, deterioration followed by periods of stabilization, and deterioration with abrupt periods of increasing severity.
The syndrome has previously been considered to have a high mortality rate but the initial response of most patients to the Riboflavin protocol are very encouraging and seem to indicate a significantly improved life expectancy could be achievable. There are three documented cases of BVVL where the patient died within the first five years of the disease. On the contrary, most patients have survived more than 10 years after the onset of their first symptom, and several cases have survived 20–30 years after the onset of their first symptom.
Families with multiple cases of BVVL and, more generally, multiple cases of infantile progressive bulbar palsy can show variability in age of disease onset and survival. Dipti and Childs described such a situation in which a family had five children that had Infantile PBP. In this family, three siblings showed sensorineural deafness and other symptoms of BVVL at an older age. The other two siblings showed symptoms of Fazio-Londe disease and died before the age of two.