Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The primary treatment method for fatty-acid metabolism disorders is dietary modification. It is essential that the blood-glucose levels remain at adequate levels to prevent the body from moving fat to the liver for energy. This involves snacking on low-fat, high-carbohydrate nutrients every 2–6 hours. However, some adults and children can sleep for 8–10 hours through the night without snacking.
Carnitor - an L-carnitine supplement that has shown to improve the body's metabolism in individuals with low L-carnitine levels. It is only useful for Specific fatty-acid metabolism disease.
Treatment of THB deficiencies consists of THB supplementation (2–20 mg/kg per day) or diet to control blood phenylalanine concentration and replacement therapy with neurotransmitters precursors (L-DOPA and 5-HTP) and supplements of folinic acid in DHPR deficiency.
Tetrahydrobiopterin is available as a tablet for oral administration in the form of "tetrahydrobiopterin dihydrochloride" (BH4*2HCL). BH4*2HCL is FDA approved under the trade name Kuvan. The typical cost of treating a patient with Kuvan is $100,000 per year. BioMarin holds the patent for Kuvan until at least 2024, but Par Pharmaceutical has a right to produce a generic version by 2020. BH4*2HCL is indicated at least in tetrahydrobiopterin deficiency caused by GTPCH deficiency or PTPS deficiency.
Currently, the most common form of treatment for SLOS involves dietary cholesterol supplementation. Anecdotal reports indicate that this has some benefits; it may result in increased growth, lower irritability, improved sociability, less self-injurious behaviour, less tactile defensiveness, fewer infections, more muscle tone, less photosensitivity and fewer autistic behaviours. Cholesterol supplementation begins at a dose of 40–50 mg/kg/day, increasing as needed. It is administered either through consuming foods high in cholesterol (eggs, cream, liver), or as purified food grade cholesterol. Younger children and infants may require tube feeding. However, dietary cholesterol does not reduce the levels of 7DHC, cannot cross the blood–brain barrier, and does not appear to improve developmental outcomes. One empirical study found that cholesterol supplementation did not improve developmental delay, regardless of the age at which it began. This is likely because most developmental delays stem from malformations of the brain, which dietary cholesterol cannot ameliorate due to its inability to cross the blood–brain barrier.
HMG-CoA reductase inhibitors have been examined as treatment for SLOS. Given that this catalyzes the rate-limiting step in cholesterol synthesis, inhibiting it would reduce the buildup of toxic metabolites such as 7DHC. Simvastatin is a known inhibitor of HMG-CoA reductase, and most importantly is able to cross the blood–brain barrier. It has been reported to decrease the levels of 7DHC, as well as increase the levels of cholesterol. The increased cholesterol levels are due to simvastatin's effect on the expression of different genes. Simvastatin increases the expression of "DHCR7", likely leading to increased activity of DHCR7. It has also been shown to increase the expression of other genes involved in cholesterol synthesis and uptake. However, these benefits are dependent on the amount of residual cholesterol synthesis. Because some individuals possess less severe mutations and demonstrate some amount of DCHR7 activity, these people benefit the most from simvastatin therapy as they still have a partially functioning enzyme. For individuals that show no residual DCHR7 activity, such as those homozygous for null alleles or mutations, simvastatin therapy may actually be toxic. This highlights the importance of identifying the specific genotype of the SLOS patient before administering treatment. It is still unknown if simvastatin will improve the behavioural or learning deficits in SLOS.
Management for mitochondrial trifunctional protein deficiency entails the following:
- Avoiding factors that might precipitate condition
- Glucose
- Low fat/high carbohydrate nutrition
Since PCT is a chronic condition, a comprehensive management of the disease is the most effective means of treatment. Primarily, it is key that patients diagnosed with PCT avoid alcohol consumption, iron supplements, excess exposure to sunlight (especially in the summer), as well as estrogen and chlorinated cyclic hydrocarbons, all of which can potentially exacerbate the disorder. Additionally, the management of excess iron (due to the commonality of hemochromatosis in PCT patients) can be achieved through phlebotomy, whereby blood is systematically drained from the patient. A borderline iron deficiency has been found to have a protective affect by limiting heme synthesis. In the absence of iron, which is to be incorporated in the porphyrin formed in the last step of the synthesis, the mRNA of erythroid 5-aminolevulinate synthase (ALAS-2) is blocked by attachment of an iron-responsive element (IRE) binding cytosolic protein, and transcription of this key enzyme is inhibited.
Low doses of antimalarials can be used. Orally ingested chloroquine is completely absorbed in the gut and is preferentially concentrated in the liver, spleen, and kidneys. They work by removing excess porphyrins from the liver via increasing the excretion rate by forming a coordination complex with the iron center of the porphyrin as well as an intramolecular hydrogen bond between a propionate side chain of the porphyrin and the protonated quinuclidine nitrogen atom of either alkaloid. Due to the presence of the chlorine atom, the entire complex is more water soluble allowing the kidneys to preferentially remove it from the blood stream and expel it through urination. It should be noted that chloroquine treatment can induce porphyria attacks within the first couple of months of treatment due to the mass mobilization of porphyrins from the liver into the blood stream. Complete remission can be seen within 6–12 months as each dose of antimalarial can only remove a finite amount of porphyrins and there are generally decades of accumulation to be cleared. Originally, higher doses were used to treat the condition but are no longer recommended because of liver toxicity. Finally, due to the strong association between PCT and Hepatitis C, the treatment of Hepatitis C (if present) is vital to the effective treatment of PCT.
Chloroquine, hydroxychloroquine, and venesection are typically employed in the management strategy.
In terms of the treatment for ativated PI3K delta syndrome, generally primary immunodeficiencies see the following used:
- Bacterial infection should be treated rapidly(with antibiotics)
- Antiviral therapy
- Modify lifestyle(exposure to pathogens need to be minimized)
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
No cures for lysosomal storage diseases are known, and treatment is mostly symptomatic, although bone marrow transplantation and enzyme replacement therapy (ERT) have been tried with some success. ERT can minimize symptoms and prevent permanent damage to the body. In addition, umbilical cord blood transplantation is being performed at specialized centers for a number of these diseases. In addition, substrate reduction therapy, a method used to decrease the production of storage material, is currently being evaluated for some of these diseases. Furthermore, chaperone therapy, a technique used to stabilize the defective enzymes produced by patients, is being examined for certain of these disorders. The experimental technique of gene therapy may offer cures in the future.
Ambroxol has recently been shown to increase activity of the lysosomal enzyme glucocerebrosidase, so it may be a useful therapeutic agent for both Gaucher disease and Parkinson's disease. Ambroxol triggers the secretion of lysosomes from cells by inducing a pH-dependent calcium release from acidic calcium stores. Hence, relieving the cell from accumulating degradation products is a proposed mechanism by which this drug may help.
Bone marrow transplant may be possible for Severe Combined Immune Deficiency and other severe immunodeficiences.
Virus-specific T-Lymphocytes (VST) therapy is used for patients who have received hematopoietic stem cell transplantation that has proven to be unsuccessful. It is a treatment that has been effective in preventing and treating viral infections after HSCT. VST therapy uses active donor T-cells that are isolated from alloreactive T-cells which have proven immunity against one or more viruses. Such donor T-cells often cause acute graft-versus-host disease (GVHD), a subject of ongoing investigation. VSTs have been produced primarily by ex-vivo cultures and by the expansion of T-lymphocytes after stimulation with viral antigens. This is carried out by using donor-derived antigen-presenting cells. These new methods have reduced culture time to 10–12 days by using specific cytokines from adult donors or virus-naive cord blood. This treatment is far quicker and with a substantially higher success rate than the 3–6 months it takes to carry out HSCT on a patient diagnosed with a primary immunodeficiency. T-lymphocyte therapies are still in the experimental stage; few are even in clinical trials, none have been FDA approved, and availability in clinical practice may be years or even a decade or more away.
Most (>95%) infants with biliary atresia will undergo an operation designed to retain and salvage the native liver, restore bile flow and reduce the level of jaundice. This is known as the Kasai procedure (after Morio Kasai, the Japanese surgeon who first developed the technique) or hepatoportoenterostomy. Although the procedure is not thought of as curative, it may relieve jaundice, and stop liver fibrosis allowing normal growth and development. Published series from Japan, North America and the UK show that bilirubin levels will fall to normal values in about 50-55% of infants allowing 40-50% to retain their own liver to reach the age of 5 and 10 years (and beyond). Liver transplantation is an option for those children whose liver function and symptoms fail to respond to a Kasai operation.
Recent large-scale studies by Davenport et al. ("Annals of Surgery", 2008) show that the age of the patient is not an absolute clinical factor affecting prognosis. The influence of age differs according to the disease etiology—i.e., whether biliary atresia is isolated, cystic (CBA), or accompanied by splenic malformation (BASM).
It is widely accepted that corticosteroid treatment after a Kasai operation, with or without choleretics and antibiotics, has a beneficial effect on postoperative bile flow and can clear jaundice, but the dosing and duration of the ideal steroid protocol are controversial. Furthermore, it has been observed in many retrospective longitudinal studies that corticosteroid treatment does not prolong survival of the native liver or transplant-free survival. Davenport et al. also showed ("Hepatology" 2007) that short-term, low-dose steroid therapy following a Kasai operation had no effect on the mid- or long-term prognosis of biliary atresia patients.
There is no known cure for Niemann–Pick type C, nor is there any FDA-standard approved disease modifying treatment. Supportive care is essential and substantially improves the quality of life of people affected by NPC. The therapeutic team may include specialists in neurology, pulmonology, gastroenterology, psychiatrist, orthopedics, nutrition, physical therapy and occupational therapy. Standard medications used to treat symptoms can be used in NPC patients. As patients develop difficulty with swallowing, food may need to be softened or thickened, and eventually, parents will need to consider placement of a gastrostomy tube (g-tube, feeding tube).
An observational study is underway at the National Institutes of Health to better characterize the natural history of NPC and to attempt to identify markers of disease progression.
In 2014 the European Medicines Agency (EMA) granted orphan drug designation to arimoclomol for the treatment of Niemann-Pick type C. This was followed in 2015 by the U.S. Food & Drug Administration (FDA). Dosing in a placebo-controlled phase II/III clinical trial to investigate treatment for Niemann-Pick type C (for patients with both type C1 and C2) using arimoclomol began in 2016. Arimoclomol, which is orally administered, induces the heat shock response in cells and is well tolerated in humans.
In terms of treatment a 2013 review indicates that colchicine can be used for DIRA. Additionally there are several other management options such as anakinra, which blocks naturally occurring IL-1, this according to a 2016 pediatric textbook.
Infant mortality is high for patients diagnosed with early onset; mortality can occur within less than 2 months, while children diagnosed with late-onset syndrome seem to have higher rates of survival. Patients suffering from a complete lesion of mut0 have not only the poorest outcome of those suffering from methylaonyl-CoA mutase deficiency, but also of all individuals suffering from any form of methylmalonic acidemia.
Once a diagnosis is made, the treatment is based on an individual’s clinical condition. Based on the apparent activation of the mTOR pathway, Lucas and colleagues treated patients with rapamycin, an mTOR inhibitor. This effectively reduced hepatosplenomegaly and lymphadenopathy, most likely by restoring the normal balance of naïve, effector, and memory cells in the patients’ immune system. More research is needed to determine the most effective timing and dosage of this medication and to investigate other treatment options. Investigators at the National Institute of Allergy and Infectious Diseases at the US National Institutes of Health currently have clinical protocols to study new approaches to the diagnosis and treatment of this disorder.
Several tests can be done to discover the dysfunction of methylmalonyl-CoA mutase. Ammonia test, blood count, CT scan, MRI scan, electrolyte levels, genetic testing, methylmalonic acid blood test, and blood plasma amino acid tests all can be conducted to determine deficiency.
There is no treatment for complete lesion of the mut0 gene, though several treatments can help those with slight genetic dysfunction. Liver and kidney transplants, and a low-protein diet all help regulate the effects of the diseases.
XX females with lipoid CAH may need estrogen replacement at or after puberty. Active intervention has been used to preserve the possibility of fertility and conception in lipoid CAH females. In a case report in 2009, a woman with late onset lipoid CAH due to StAR deficiency underwent hormone replacement therapy in combination with an assisted fertility technique, intracytoplasmic sperm injection. This led to ovulation and with implantation of the in vitro fertilized egg, a successful birth.
Since the conversion of dihydroxyphenylserine (Droxidopa; trade name: Northera; also known as L-DOPS, L-threo-dihydroxyphenylserine, L-threo-DOPS and SM-5688), to norepinephrine bypasses the dopamine beta-hydroxylation step of catecholamine synthesis, L-Threo-DOPS is the ideal therapeutic agent. In humans with DβH deficiency, L-Threo-DOPS, a synthetic precursor of noradrenaline, administration has proven effective in dramatic increase of blood pressure and subsequent relief of postural symptoms.
L-DOPS continues to be studied pharmacologically and pharmacokinetically and shows an ability to increase the levels of central nervous system norepinephrine by a significant amount. This is despite the fact that L-DOPS has a relative difficulty crossing the blood-brain barrier when compared to other medications such as L-DOPA. When used concurrently, there is evidence to show that there is increased efficacy as they are both intimately involved and connected to the pathway in becoming norepinephrine.
There is hope and evidence that L-DOPS can be used much more widely to help other conditions or symptoms such as pain, chronic stroke symptoms, and progressive supranuclear palsy, amongst others. Clinically, L-DOPS has been already shown to be helpful in treating a variety of other conditions related to hypotension including the following:
- Diabetes induced orthostatic hypotension
- Dialysis-induced hypotension
- Orthostatic intolerance
- Familial amyloidotic polyneuropathy
- Spinal Cord Injury related hypotension
Empirical evidence of mild effectiveness has been reported using mineralocorticoids or adrenergic receptor agonists as therapies.
Other medications that can bring relief to symptoms include:
- phenylpropanolamine- due to pressor response to vascular α-adrenoceptors
- indomethacin
Vitamin C (ascorbic acid) is also a required cofactor for the Dopamine beta hydroxylase enzyme. Recent research has shown that vitamin C rapidly catalyzes the conversion of dopamine to norepinephrine through stimulation of the dopamine beta hydroxylase enzyme.
Some of the childhood management issues are similar those of 21-hydroxylase deficiency:
- Replacing mineralocorticoid with fludrocortisone
- Suppressing DHEA and replacing cortisol with glucocorticoid
- Providing extra glucocorticoid for stress
- Close monitoring and perhaps other adjunctive measures to optimize growth
- Deciding whether surgical repair of virilized female genitalia is warranted
However, unlike 21-hydroxylase CAH, children with 3β-HSD CAH may be unable to produce adequate amounts of testosterone (boys) or estradiol (girls) to effect normal pubertal changes. Replacement testosterone or estrogen and progesterone can be initiated at adolescence and continued throughout adult life. Fertility may be impaired by the difficulty of providing appropriate sex hormone levels in the gonads even though the basic anatomy is present.
Less than 20 patients with MGA type I have been reported in the literature (Mol Genet Metab. 2011 Nov;104(3):410-3. Epub 2011 Jul 26.)
Management of salt-wasting crises and mineralocorticoid treatment are as for other forms of salt-wasting congenital adrenal hyperplasias: saline and fludrocortisone.
Glucocorticoids can be provided at minimal replacement doses because there is no need for suppression of excessive adrenal androgens or mineralocorticoids. As with other forms of adrenal insufficiency, extra glucocorticoid is needed for stress coverage.
Currently Sandhoff disease does not have any standard treatment and does not have a cure. However, a person suffering from the disease needs proper nutrition, hydration, and maintenance of clear airways. To reduce some symptoms that may occur with Sandhoff disease, the patient may take anticonvulsants to manage seizures or medications to treat respiratory infections, and consume a precise diet consisting of puree foods due to difficulties swallowing. Infants with the disease usually die by the age of 3 due to respiratory infections. The patient must be under constant surveillance because they can suffer from aspiration or lack the ability to change from the passageway to their lungs versus their stomach and their spit travels to the lungs causing bronchopneumonia. The patient also lacks the ability to cough and therefore must undergo a treatment to shake up their body to remove the mucus from the lining of their lungs. Medication is also given to patients to lessen their symptoms including seizures.
Currently the government is testing several treatments including N-butyl-deoxynojirimycin in mice, as well as stem cell treatment in humans and other medical treatments recruiting test patients.
Untreated individuals with DβH deficiency should avoid hot environments, strenuous exercise, standing still, and dehydration.