Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The main strategies for the management of thyroid storm are reducing production and release of thyroid hormone, reducing the effects of thyroid hormone on tissues, replacing fluid losses, and controlling temperature. Thyroid storm requires prompt treatment and hospitalization. Often, admission to the intensive care unit is needed.
Iodine
Guidelines recommend the administration of inorganic iodide (potassium iodide or Lugol's iodine) to reduce the synthesis and release of thyroid hormone. Iodine reduces the synthesis of thyroid hormone via the Wolf-Chaikoff effect. Some guidelines recommend that iodine be administered after antithyroid medications are started, because iodine is also a substrate for the synthesis of thyroid hormone, and may worsen hyperthyroidism if administered without antithyroid medications.
Antithyroid Medications
Antithyroid drugs (propylthiouracil or methimazole) are used to reduce the synthesis and release of thyroid hormone. Propylthiouracil is preferred over methimazole due to its additional effects on reducing peripheral conversion of T4 to T3, however both are commonly used.
Beta Blockers
The administration of beta-1-selective beta blockers (e.g. propranolol) is recommended to reduce the effect of circulating thyroid hormone on end organs. In addition, propanolol at high doses also reduces peripheral conversion of T4 to T3, which is the more active form of thyroid hormone. Although previously unselective beta blockers (e.g., propranolol) have been suggested to be beneficial due to their inhibitory effects on peripheral deiodinases recent research suggests them to be associated with increased mortality. Therefore, cardioselective beta blockers may be favourable.
Corticosteroids
High levels of thyroid hormone result in a hypermetabolic state, which can result in increased breakdown of cortisol, a hormone produced by the adrenal gland. This results in a state of relative adrenal insufficiency, in which the amount of cortisol is not sufficient. Guidelines recommend that corticosteroids (hydrocortisone and dexamethasone are preferred over prednisolone or methylprednisolone) be administered to all patients with thyroid storm. However, doses should be altered for each individual patient to ensure that the relative adrenal insufficiency is adequately treated while minimizing the risk of side effects.
Supportive Measures
In high fever, temperature control is achieved with fever reducers such as paracetamol/acetaminophen and external cooling measures (cool blankets, ice packs). Dehydration, which occurs due to fluid loss from sweating, diarrhea, and vomiting, is treated with frequent fluid replacement. In severe cases, mechanical ventilation may be necessary. Any suspected underlying cause is also addressed.
People with autoimmune hyperthyroidism should not eat foods high in iodine, such as edible seaweed and kelps.
From a public health perspective, the general introduction of iodized salt in the United States in 1924 resulted in lower disease, goiters, as well as improving the lives of children whose mothers would not have eaten enough iodine during pregnancy which would have lowered the IQs of their children.
Surgery (thyroidectomy to remove the whole thyroid or a part of it) is not extensively used because most common forms of hyperthyroidism are quite effectively treated by the radioactive iodine method, and because there is a risk of also removing the parathyroid glands, and of cutting the recurrent laryngeal nerve, making swallowing difficult, and even simply generalized staphylococcal infection as with any major surgery. Some people with Graves' may opt for surgical intervention. This includes those that cannot tolerate medicines for one reason or another, people that are allergic to iodine, or people that refuse radioiodine.
If people have toxic nodules treatments typically include either removal or injection of the nodule with alcohol.
Levothyroxine is a stereoisomer of thyroxine (T4) which is degraded much more slowly and can be administered once daily in patients with hypothyroidism. Natural thyroid hormone from pigs is sometimes also used, especially for people who cannot tolerate the synthetic version. Hyperthyroidism caused by Graves' disease may be treated with the thioamide drugs propylthiouracil, carbimazole or methimazole, or rarely with Lugol's solution. Additionally, hyperthyroidism and thyroid tumors may be treated with radioactive iodine. Ethanol injections for the treatment of recurrent thyroid cysts and metastatic thyroid cancer in lymph nodes can also be an alternative to surgery.
Toxic multinodular goiter can be treated with antithyroid medications such as propylthiouracil or methimazole, radioactive iodine, or with surgery.
Another treatment option is injection of ethanol into the nodules.
Radioiodine therapy with iodine-131 can be used to shrink the thyroid gland (for instance, in the case of large goiters that cause symptoms but do not harbor cancer—after evaluation and biopsy of suspicious nodules has been done), or to destroy hyperactive thyroid cells (for example, in cases of thyroid cancer). The iodine uptake can be high in countries with iodine deficiency, but low in iodine sufficient countries. To enhance iodine-131 uptake by the thyroid and allow for more successful treatment, TSH is raised prior to therapy in order to stimulate the existing thyroid cells. This is done either by withdrawal of thyroid hormone medication or injections of recombinant human TSH (Thyrogen), released in the United States in 1999. Thyrogen injections can reportedly boost uptake up to 50-60%. Radioiodine treatment can also cause hypothyroidism (which is sometimes the end goal of treatment) and, although rare, a pain syndrome (due to radiation thyroiditis).
There is little evidence whether there is a benefit from treating subclinical hypothyroidism, and whether this offsets the risks of overtreatment. Untreated subclinical hypothyroidism may be associated with a modest increase in the risk of coronary artery disease. A 2007 review found no benefit of thyroid hormone replacement except for "some parameters of lipid profiles and left ventricular function". There is no association between subclinical hypothyroidism and an increased risk of bone fractures, nor is there a link with cognitive decline.
Since 2008, consensus American and British opinion has been that in general people with TSH under 10 mIU/l do not require treatment. American guidelines recommend that treatment should be considered if the TSH is elevated but below 10 mIU/l in people with symptoms of hypothyroidism, detectable antibodies against thyroid peroxidase, a history of heart disease or are at an increased risk for heart disease.
Desiccated thyroid extract is an animal-based thyroid gland extract, most commonly from pigs. It is a combination therapy, containing forms of T and T. It also contains calcitonin (a hormone produced in the thyroid gland involved in the regulation of calcium levels), T and T; these are not present in synthetic hormone medication. This extract was once a mainstream hypothyroidism treatment, but its use today is unsupported by evidence; British Thyroid Association and American professional guidelines discourage its use.
The transition from hyperthyroidism to thyroid storm is typically triggered by a non-thyroidal insult including, but not limited to fever, sepsis, dehydration, myocardial infarction, and psychiatric diseases. Individuals are at higher risk of thyroid storm if their hyperthyroidism is incompletely treated or if their anti-thyroid drugs are discontinued. Many of these individuals have underlying primary causes of hyperthyroidism (Graves disease, toxic multi-nodular goiter, solitary toxic adenoma). However, thyroid storm can occur in individuals with unrecognized thyrotoxicosis experiencing non-thyroid surgery, labor, infection, or exposure to certain medications and radiocontrast dyes.
Thyroid hormone resistance syndrome is rare, incidence is variously quoted as 1 in 50,000 or 1 in 40,000 live births. More than 1000 individuals have been identified with thyroid hormone resistance, of which 85% had thyroid hormone beta receptor mutation.
Beta blockers, like Atenolol, are sometimes used to help suppress symptoms.
The usage of terminology for types of goiter has varied over the past century. Physicians and surgeons tend to differentiate among solitary-nodule goiter, multinodular goiter, and non-nodular goiter more thoroughly in recent decades than they formerly did. Thus some sources have described, or still describe, thyroid adenoma (toxic adenoma) as synonymous with toxic multinodular goiter, but other sources differentiate those two as single-nodule disease versus multinodular disease (respectively) with pathogenesis that is likely differing in most cases (eg, single neoplastic cell clone versus multifocal or diffuse molecular metabolic change). The medical eponyms "Plummer disease" (named after American physician Henry Stanley Plummer) and "Parry disease" (named after English physician Caleb Hillier Parry) have been used to refer to toxic multinodular goiter, toxic adenoma, and toxic diffuse goiter (Graves' disease); the specific entity in each patient/case is not always clear retrospectively, especially in older literature. This is logical given that advanced medical imaging that can show what is happening at various places within a thyroid gland inside a living person (such as nuclear medicine imaging of radioiodine tracer uptake) was not available until after the 1940s.
Treatment for Addison's disease involves replacing the missing cortisol, sometimes in the form of hydrocortisone tablets, or prednisone tablets in a dosing regimen that mimics the physiological concentrations of cortisol. Alternatively, one-quarter as much prednisolone may be used for equal glucocorticoid effect as hydrocortisone. Treatment is usually lifelong. In addition, many patients require fludrocortisone as replacement for the missing aldosterone.
People with Addison's are often advised to carry information on them (e.g., in the form of a MedicAlert bracelet or information card) for the attention of emergency medical services personnel who might need to attend to their needs. It is also recommended that a needle, syringe, and injectable form of cortisol be carried for emergencies. People with Addison's disease are advised to increase their medication during periods of illness or when undergoing surgery or dental treatment. Immediate medical attention is needed when severe infections, vomiting, or diarrhea occur, as these conditions can precipitate an Addisonian crisis. A patient who is vomiting may require injections of hydrocortisone instead.
Standard therapy involves intravenous injections of glucocorticoids and large volumes of intravenous saline solution with dextrose (glucose). This treatment usually brings rapid improvement. If intravenous access is not immediately available, intramuscular injection of glucocorticoids can be used. When the patient can take fluids and medications by mouth, the amount of glucocorticoids is decreased until a maintenance dose is reached. If aldosterone is deficient, maintenance therapy also includes oral doses of fludrocortisone acetate.
Drug induced (iatrogenic) hypoadrenocorticism is caused during abrupt cessation of a steroid medication. During steroid treatment, the adrenal glands do not function fully. The body senses the levels of the exogenous steroids in the system and therefore does not signal for additional production. The usual protocol for stopping steroid medications is not to eliminate them suddenly, but to withdraw from them gradually in a "tapering off" process, which allows the production to adjust to normal. If steroids are abruptly withdrawn, the dormant adrenal glands may not able to reactivate, and the body will need to have its adrenal glucocorticoid hormones replaced by medication.
Treatment of Graves' disease includes antithyroid drugs which reduce the production of thyroid hormone; radioiodine (radioactive iodine I-131); and thyroidectomy (surgical excision of the gland). As operating on a frankly hyperthyroid patient is dangerous, prior to thyroidectomy, preoperative treatment with antithyroid drugs is given to render the patient "euthyroid" ("i.e." normothyroid). Each of these treatments has advantages and disadvantages. No one treatment approach is considered the best for everyone.
Treatment with antithyroid medications must be given for six months to two years to be effective. Even then, upon cessation of the drugs, the hyperthyroid state may recur. The risk of recurrence is about 40–50%, and lifelong treatment with antithyroid drugs carries some side effects such as agranulocytosis and liver disease. Side effects of the antithyroid medications include a potentially fatal reduction in the level of white blood cells. Therapy with radioiodine is the most common treatment in the United States, while antithyroid drugs and/or thyroidectomy are used more often in Europe, Japan, and most of the rest of the world.
β-Blockers (such as propranolol) may be used to inhibit the sympathetic nervous system symptoms of tachycardia and nausea until such time as antithyroid treatments start to take effect. Pure β-blockers do not inhibit lid-retraction in the eyes, which is mediated by alpha adrenergic receptors.
In a study of 1,034 symptomatic adults, Sheehan syndrome was found to be the sixth most frequent etiology of growth hormone deficiency, being responsible for 3.1% of cases (versus 53.9% due to a pituitary tumor).
Goitre is treated according to the cause. If the thyroid gland is producing too much T3 and T4, radioactive iodine is given to the patient to shrink the gland. If goitre is caused by iodine deficiency, small doses of iodide in the form of Lugol's Iodine or KI solution are given. If the goitre is associated with an underactive thyroid, thyroid supplements are used as treatment. In extreme cases, a partial or complete thyroidectomy is required.
The main antithyroid drugs are carbimazole (in the UK), methimazole (in the US), and propylthiouracil/PTU. These drugs block the binding of iodine and coupling of iodotyrosines. The most dangerous side effect is agranulocytosis (1/250, more in PTU). Others include granulocytopenia (dose-dependent, which improves on cessation of the drug) and aplastic anemia. Patients on these medications should see a doctor if they develop sore throat or fever. The most common side effects are rash and peripheral neuritis. These drugs also cross the placenta and are secreted in breast milk. Lugol's iodine may be used to block hormone synthesis before surgery.
A randomized control trial testing single-dose treatment for Graves' found methimazole achieved euthyroid state more effectively after 12 weeks than did propylthyouracil (77.1% on methimazole 15 mg vs 19.4% in the propylthiouracil 150 mg groups).
No difference in outcome was shown for adding thyroxine to antithyroid medication and continuing thyroxine versus placebo after antithyroid medication withdrawal. However, two markers were found that can help predict the risk of recurrence. These two markers are a positive TSHr antibody (TSHR-Ab) and smoking. A positive TSHR-Ab at the end of antithyroid drug treatment increases the risk of recurrence to 90% (sensitivity 39%, specificity 98%), a negative TSHR-Ab at the end of antithyroid drug treatment is associated with a 78% chance of remaining in remission. Smoking was shown to have an impact independent to a positive TSHR-Ab.
Treatment is directed towards (1) correcting hypotension, hypovolemia, electrolyte imbalances, and metabolic acidosis; (2) improving vascular integrity, and (3) providing an immediate source of glucocorticoids. Rapid correction of hypovolemia is the first priority.
Most patients show dramatic improvement within 24 to 48 hours of appropriate fluid and glucocorticoid therapy. Over the ensuing 2 to 4 days, a gradual transition from IV fluids to oral water and food is undertaken, and maintenance mineralocorticoid and glucocorticoid therapy is initiated. Failure to make this transition smoothly should raise suspicion of insufficient glucocorticoid supplementation, concurrent endocrinopathy (e.g. hypothyroidism), or cocurrent illness (especially renal damage).
Goitre is more common among women, but this includes the many types of goitre caused by autoimmune problems, and not only those caused by simple lack of iodine.
Thyrotoxicosis factitia refers to a condition of thyrotoxicosis caused by the ingestion of exogenous thyroid hormone. It can be the result of mistaken ingestion of excess drug, such as levothyroxine, or as a symptom of Munchausen syndrome. It is an uncommon form of hyperthyroidism.
Patients present with hyperthyroidism and may be mistaken for Graves’ disease, if TSH receptor positive, or thyroiditis because of absent uptake on a thyroid radionuclide uptake scan due to suppression of thyroid function by exogenous thyroid hormones. Ingestion of thyroid hormone also suppresses thyroglobulin levels helping to differentiate thyrotoxicosis factitia from other causes of hyperthyroidism, in which serum thyroglobulin is elevated. Caution, however, should be exercised in interpreting thyroglobulin results without thyroglobulin antibodies, since thyroglobulin antibodies commonly interfere in thyroglobulin immunoassays causing false positive and negative results which may lead to clinical misdirection. In such cases, increased faecal thyroxine levels in thyrotoxicosis factitia may help differentiate it from other causes of hyperthyroidism.
Levothyroxine is a stereoisomer of thyroxine which is degraded much slower and can be administered once daily in patients with hypothyroidism.
In endocrinology, medical emergencies include diabetic ketoacidosis, hyperosmolar hyperglycemic state, hypoglycemic coma, acute adrenocortical insufficiency, phaeochromocytoma crisis, hypercalcemic crisis, thyroid storm, myxoedema coma and pituitary apoplexy.
Emergencies arising from decompensated pheochromocytomas or parathyroid adenomas are sometimes referred for emergency resection when aggressive medical therapies fail to control the patient's state, however the surgical risks are significant, especially blood pressure lability and the possibility of cardiovascular collapse after resection (due to a brutal drop in respectively catecholamines and calcium, which must be compensated with gradual normalization). It remains debated when emergency surgery is appropriate as opposed to urgent or elective surgery after continued attempts to stabilize the patient, notably in view of newer and more efficient medications and protocols.
All causes in this category are genetic, and generally very rare. These include mutations to the "SF1" transcription factor, congenital adrenal hypoplasia due to "DAX-1" gene mutations and mutations to the ACTH receptor gene (or related genes, such as in the Triple A or Allgrove syndrome). "DAX-1" mutations may cluster in a syndrome with glycerol kinase deficiency with a number of other symptoms when "DAX-1" is deleted together with a number of other genes.