Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In endocrinology, medical emergencies include diabetic ketoacidosis, hyperosmolar hyperglycemic state, hypoglycemic coma, acute adrenocortical insufficiency, phaeochromocytoma crisis, hypercalcemic crisis, thyroid storm, myxoedema coma and pituitary apoplexy.
Emergencies arising from decompensated pheochromocytomas or parathyroid adenomas are sometimes referred for emergency resection when aggressive medical therapies fail to control the patient's state, however the surgical risks are significant, especially blood pressure lability and the possibility of cardiovascular collapse after resection (due to a brutal drop in respectively catecholamines and calcium, which must be compensated with gradual normalization). It remains debated when emergency surgery is appropriate as opposed to urgent or elective surgery after continued attempts to stabilize the patient, notably in view of newer and more efficient medications and protocols.
Thyroid hormone resistance syndrome is rare, incidence is variously quoted as 1 in 50,000 or 1 in 40,000 live births. More than 1000 individuals have been identified with thyroid hormone resistance, of which 85% had thyroid hormone beta receptor mutation.
Toxic multinodular goiter can be treated with antithyroid medications such as propylthiouracil or methimazole, radioactive iodine, or with surgery.
Another treatment option is injection of ethanol into the nodules.
Levothyroxine is a stereoisomer of thyroxine (T4) which is degraded much more slowly and can be administered once daily in patients with hypothyroidism. Natural thyroid hormone from pigs is sometimes also used, especially for people who cannot tolerate the synthetic version. Hyperthyroidism caused by Graves' disease may be treated with the thioamide drugs propylthiouracil, carbimazole or methimazole, or rarely with Lugol's solution. Additionally, hyperthyroidism and thyroid tumors may be treated with radioactive iodine. Ethanol injections for the treatment of recurrent thyroid cysts and metastatic thyroid cancer in lymph nodes can also be an alternative to surgery.
Goitre is treated according to the cause. If the thyroid gland is producing too much T3 and T4, radioactive iodine is given to the patient to shrink the gland. If goitre is caused by iodine deficiency, small doses of iodide in the form of Lugol's Iodine or KI solution are given. If the goitre is associated with an underactive thyroid, thyroid supplements are used as treatment. In extreme cases, a partial or complete thyroidectomy is required.
Beta blockers, like Atenolol, are sometimes used to help suppress symptoms.
Radioiodine therapy with iodine-131 can be used to shrink the thyroid gland (for instance, in the case of large goiters that cause symptoms but do not harbor cancer—after evaluation and biopsy of suspicious nodules has been done), or to destroy hyperactive thyroid cells (for example, in cases of thyroid cancer). The iodine uptake can be high in countries with iodine deficiency, but low in iodine sufficient countries. To enhance iodine-131 uptake by the thyroid and allow for more successful treatment, TSH is raised prior to therapy in order to stimulate the existing thyroid cells. This is done either by withdrawal of thyroid hormone medication or injections of recombinant human TSH (Thyrogen), released in the United States in 1999. Thyrogen injections can reportedly boost uptake up to 50-60%. Radioiodine treatment can also cause hypothyroidism (which is sometimes the end goal of treatment) and, although rare, a pain syndrome (due to radiation thyroiditis).
Levothyroxine is a stereoisomer of thyroxine which is degraded much slower and can be administered once daily in patients with hypothyroidism.
Thyroid dysgenesis or thyroid agenesis is a cause of congenital hypothyroidism where the thyroid is missing, ectopic, or severely underdeveloped.
It should not be confused with iodine deficiency, or with other forms of congenital hypothyroidism, such as thyroid dyshormonogenesis, where the thyroid is present but not functioning correctly.
Congenital hypothyroidism caused by thyroid dysgenesis can be associated with PAX8.
In larger case series, the mortality was 1.6% overall. In the group of patients who were unwell enough to require surgery, the mortality was 1.9%, with no deaths in those who could be treated conservatively.
After an episode of pituitary apoplexy, 80% of people develop hypopituitarism and require some form of hormone replacement therapy. The most common problem is growth hormone deficiency, which is often left untreated but may cause decreased muscle mass and strength, obesity and fatigue. 60–80% require hydrocortisone replacement (either permanently or when unwell), 50–60% need thyroid hormone replacement, and 60–80% of men require testosterone supplements. Finally, 10–25% develop diabetes insipidus, the inability to retain fluid in the kidneys due to a lack of the pituitary antidiuretic hormone. This may be treated with the drug desmopressin, which can be applied as a nose spray or taken by mouth.
People with autoimmune hyperthyroidism should not eat foods high in iodine, such as edible seaweed and kelps.
From a public health perspective, the general introduction of iodized salt in the United States in 1924 resulted in lower disease, goiters, as well as improving the lives of children whose mothers would not have eaten enough iodine during pregnancy which would have lowered the IQs of their children.
Goitre is more common among women, but this includes the many types of goitre caused by autoimmune problems, and not only those caused by simple lack of iodine.
The first priority in suspected or confirmed pituitary apoplexy is stabilization of the circulatory system. Cortisol deficiency can cause severe low blood pressure. Depending on the severity of the illness, admission to a high dependency unit (HDU) may be required.
Treatment for acute adrenal insufficiency requires the administration of intravenous saline or dextrose solution; volumes of over two liters may be required in an adult. This is followed by the administration of hydrocortisone, which is pharmaceutical grade cortisol, intravenously or into a muscle. The drug dexamethasone has similar properties, but its use is not recommended unless it is required to reduce swelling in the brain around the area of hemorrhage. Some are well enough not to require immediate cortisol replacement; in this case, blood levels of cortisol are determined at 9:00 AM (as cortisol levels vary over the day). A level below 550 nmol/l indicates a need for replacement.
The decision on whether to surgically decompress the pituitary gland is complex and mainly dependent on the severity of visual loss and visual field defects. If visual acuity is severely reduced, there are large or worsening visual field defects, or the level of consciousness falls consistently, professional guidelines recommend that surgery is performed. Most commonly, operations on the pituitary gland are performed through transsphenoidal surgery. In this procedure, surgical instruments are passed through the nose towards the sphenoid bone, which is opened to give access to the cavity that contains the pituitary gland. Surgery is most likely to improve vision if there was some remaining vision before surgery, and if surgery is undertaken within a week of the onset of symptoms.
Those with relatively mild visual field loss or double vision only may be managed conservatively, with close observation of the level of consciousness, visual fields, and results of routine blood tests. If there is any deterioration, or expected spontaneous improvement does not occur, surgical intervention may still be indicated. If the apoplexy occurred in a prolactin-secreting tumor, this may respond to dopamine agonist treatment.
After recovery, people who have had pituitary apoplexy require follow-up by an endocrinologist to monitor for long-term consequences. MRI scans are performed 3–6 months after the initial episode and subsequently on an annual basis. If after surgery some tumor tissue remains, this may respond to medication, further surgery, or radiation therapy with a "gamma knife".
Most children born with congenital hypothyroidism and correctly treated with thyroxine grow and develop normally in all respects. Even most of those with athyreosis and undetectable T levels at birth develop with normal intelligence, although as a population academic performance tends to be below that of siblings and mild learning problems occur in some.
Congenital hypothyroidism is the most common preventable cause of intellectual disability. Few treatments in the practice of medicine provide as large a benefit for as small an effort.
The developmental quotient (DQ, as per Gesell Developmental Schedules) of children with hypothyroidism at age 24 months that have received treatment within the first 3 weeks of birth is summarised below:
Hyperthyroidism is one of the most common endocrine conditions affecting older domesticated housecats. Some veterinarians estimate that it occurs in up to 2% of cats over the age of 10. The disease has become significantly more common since the first reports of feline hyperthyroidism in the 1970s. One cause of hyperthyroidism in cats is the presence of benign tumors, but the reason these cats develop such tumors continues to be studied. However, recent research published in Environmental Science & Technology, a publication of the American Chemical Society, suggests that many cases of feline hyperthyroidism are associated with exposure to environmental contaminants called polybrominated diphenyl ethers (PBDEs), which are present in flame retardants in many household products, in particular, furniture and some electronics.
The study on which the report was based was conducted jointly by researchers at the EPA's National Health and Environmental Effects Laboratory and Indiana University. In the study, which involved 23 pet cats with feline hyperthyroidism, PBDE blood levels were three times as high as those in younger, non-hyperthyroid cats. In ideal circumstances, PBDE and related endocrine disruptors that seriously damage health would not be present in the blood of any animals, including humans.
Several studies indicate canned fish, liver and giblet prepared cat food may increase risk whereas fertilizers, herbicides, or plant pesticides had no effect. Another study suggests cat litter could be a problem.
Mutations of the thyroid-stimulating hormone receptor that cause a constitutive activation of the thyroid gland cells have been discovered recently. Many other factors may play a role in the pathogenesis of the disease such as goitrogens (isoflavones such as genistein, daidzein, and quercetin) as well as the iodine and selenium content of the cat's diet.
The most common presenting symptoms are: rapid weight loss, tachycardia (rapid heart rate), vomiting, diarrhea, increased consumption of fluids (polydipsia) and food, and increased urine production (polyuria). Other symptoms include hyperactivity, possible aggression, heart murmurs, a gallop rhythm, an unkempt appearance, and large, thick claws. About 70% of afflicted cats also have enlarged thyroid glands (goiter).
The same three treatments used with humans are also options in treating feline hyperthyroidism (surgery, radioiodine treatment, and anti-thyroid drugs). The drug that is used to help reduce the hyperthyroidism is methimazole. Where drug therapy is used it must be given to cats for the remainder of their lives but this may be the least expensive option, especially for very old cats. Anti-thyroid drugs for cats are available in both pill form and in a topical gel, that is applied using a finger cot to the hairless skin inside a cat's ear. Many cat owners find this gel a good option for cats that don't like being given pills. Radioiodine treatment and surgery often cure hyperthyroidism but some veterinarians prefer radioiodine treatment over surgery because it doesn't carry the risks associated with anesthesia.
Radioiodine treatment, however, is not available in all areas for cats as this treatment requires nuclear radiological expertise and facilities as the cat's urine, sweat, saliva, and stool are radioactive for several days after the treatment requiring special inpatient handling and facilities usually for a total of 3 weeks (first week in total isolation and the next two weeks in close confinement). In the United States, the guidelines for radiation levels vary from state to state; some states such as Massachusetts allow hospitalization for as little as two days before the animal is sent home with care instructions. Surgery tends to be done only when just one of the thyroid glands is affected (unilateral disease); however, following surgery, the remaining gland may become overactive. As in people, one of the most common complications of the surgery is hypothyroidism.
An alternative using high intensity focused ultrasound or HIFU has recently proved its effectiveness in treating benign thyroid nodules. This method is noninvasive, without general anesthesia and is performed in an ambulatory setting. Ultrasound waves are focused and produce heat enabling to destroy thyroid nodules.
Focused ultrasounds have been used to treat other benign tumors, such as breast fibroadenomas and fibroid disease in the uterus.
There is little evidence whether there is a benefit from treating subclinical hypothyroidism, and whether this offsets the risks of overtreatment. Untreated subclinical hypothyroidism may be associated with a modest increase in the risk of coronary artery disease. A 2007 review found no benefit of thyroid hormone replacement except for "some parameters of lipid profiles and left ventricular function". There is no association between subclinical hypothyroidism and an increased risk of bone fractures, nor is there a link with cognitive decline.
Since 2008, consensus American and British opinion has been that in general people with TSH under 10 mIU/l do not require treatment. American guidelines recommend that treatment should be considered if the TSH is elevated but below 10 mIU/l in people with symptoms of hypothyroidism, detectable antibodies against thyroid peroxidase, a history of heart disease or are at an increased risk for heart disease.
Desiccated thyroid extract is an animal-based thyroid gland extract, most commonly from pigs. It is a combination therapy, containing forms of T and T. It also contains calcitonin (a hormone produced in the thyroid gland involved in the regulation of calcium levels), T and T; these are not present in synthetic hormone medication. This extract was once a mainstream hypothyroidism treatment, but its use today is unsupported by evidence; British Thyroid Association and American professional guidelines discourage its use.
Most patients with thyroid adenoma can be managed by watchful waiting (without surgical excision) with regular monitoring. However, some patients still choose surgery after being fully informed of the risks. Regular monitoring mainly consists of watching for changes in nodule size and symptoms, and repeat ultrasonography or needle aspiration biopsy if the nodule grows.
The main strategies for the management of thyroid storm are reducing production and release of thyroid hormone, reducing the effects of thyroid hormone on tissues, replacing fluid losses, and controlling temperature. Thyroid storm requires prompt treatment and hospitalization. Often, admission to the intensive care unit is needed.
Iodine
Guidelines recommend the administration of inorganic iodide (potassium iodide or Lugol's iodine) to reduce the synthesis and release of thyroid hormone. Iodine reduces the synthesis of thyroid hormone via the Wolf-Chaikoff effect. Some guidelines recommend that iodine be administered after antithyroid medications are started, because iodine is also a substrate for the synthesis of thyroid hormone, and may worsen hyperthyroidism if administered without antithyroid medications.
Antithyroid Medications
Antithyroid drugs (propylthiouracil or methimazole) are used to reduce the synthesis and release of thyroid hormone. Propylthiouracil is preferred over methimazole due to its additional effects on reducing peripheral conversion of T4 to T3, however both are commonly used.
Beta Blockers
The administration of beta-1-selective beta blockers (e.g. propranolol) is recommended to reduce the effect of circulating thyroid hormone on end organs. In addition, propanolol at high doses also reduces peripheral conversion of T4 to T3, which is the more active form of thyroid hormone. Although previously unselective beta blockers (e.g., propranolol) have been suggested to be beneficial due to their inhibitory effects on peripheral deiodinases recent research suggests them to be associated with increased mortality. Therefore, cardioselective beta blockers may be favourable.
Corticosteroids
High levels of thyroid hormone result in a hypermetabolic state, which can result in increased breakdown of cortisol, a hormone produced by the adrenal gland. This results in a state of relative adrenal insufficiency, in which the amount of cortisol is not sufficient. Guidelines recommend that corticosteroids (hydrocortisone and dexamethasone are preferred over prednisolone or methylprednisolone) be administered to all patients with thyroid storm. However, doses should be altered for each individual patient to ensure that the relative adrenal insufficiency is adequately treated while minimizing the risk of side effects.
Supportive Measures
In high fever, temperature control is achieved with fever reducers such as paracetamol/acetaminophen and external cooling measures (cool blankets, ice packs). Dehydration, which occurs due to fluid loss from sweating, diarrhea, and vomiting, is treated with frequent fluid replacement. In severe cases, mechanical ventilation may be necessary. Any suspected underlying cause is also addressed.
Surgery is the only cure for parathyroid adenomas. It is successful about 95% of the time. Parathyroidectomy is the removal of the affected gland(s). The standard of treatment of primary hyperparathyroidism was formerly a surgical technique called bilateral neck exploration, in which the neck was opened on both sides, the parathyroids were identified, and the affected tissue was removed. By the 1980s, unilateral exploration became more common. Parathyroidectomy can now be performed in a minimally invasive fashion, mainly because imaging techniques can pinpoint the location of the tissue. Minimally invasive techniques include smaller open procedures, radio-guided and video-assisted procedures, and totally endoscopic surgery.
Before surgery is attempted, the affected glandular tissue must be located. Though the parathyroid glands are usually located on the back of the thyroid, their position is variable. Some people have one or more parathyroid glands elsewhere in the neck anatomy or in the chest. About 10% of parathyroid adenomas are ectopic, located not along the back of the thyroid but elsewhere in the body, sometimes in the mediastinum of the chest. This can make them difficult to locate, so various imaging techniques are used, such as the sestamibi scan, single-photon emission computed tomography (SPECT), ultrasound, MRI, and CT scans. sometimes parathyroid adenomas can be ablated by ethanol injection, guided by ultrasound.
Treatment of a thyroid nodule depends on many things including size of the nodule, age of the patient, the type of thyroid cancer, and whether or not it has spread to other tissues in the body.
If the nodule is benign, patients may receive thyroxine therapy to suppress thyroid-stimulating hormone and should be reevaluated in 6 months. However, if the benign nodule is inhibiting the patient's normal functions of life; such as breathing, speaking, or swallowing, the thyroid may need to be removed.
Sometimes only part of the thyroid is removed in an attempt to avoid causing hypothyroidism. There's still a risk of hypothyroidism though, as the remaining thyroid tissue may not be able to produce enough hormones in the long-run.
If the nodule is malignant or has indeterminate cytologic features, it may require surgery. A thyroidectomy is a medium risk surgery that can result complications if not performed correctly. Problems with the voice, nerve or muscular damage, or bleeding from a lacerated blood vessel are rare but serious complications that may occur. After removing the thyroid, the patient must be supplied with a replacement hormone for the rest of their life. This is commonly a daily oral medication prescribed by their endocrinologist.
Radioactive iodine-131 is used in patients with papillary or follicular thyroid cancer for ablation of residual thyroid tissue after surgery and for the treatment of thyroid cancer. Patients with medullary, anaplastic, and most Hurthle cell cancers do not benefit from this therapy. External irradiation may be used when the cancer is unresectable, when it recurs after resection, or to relieve pain from bone metastasis.
Clinical trials of protein kinase inhibitors, which block the abnormal kinase proteins involved in the development and growth of medullary cancer cells, showed clear evidence of response in 10-30% of patients. In the majority of responders there has been less than a 30% decrease in tumor mass, yet the responses have been durable; responses have been stable for periods exceeding 3 years. The major side effects of this class of drug include hypertension, nausea, diarrhea, some cardiac electrical abnormalities, and thrombotic or bleeding episodes.
Vandetanib, trade name Caprelsa, was the first drug (April 2011) to be approved by US Food and Drug Administration (FDA) for treatment of late-stage (metastatic) medullary thyroid cancer in adult patients who are ineligible for surgery.
Cabozantinib, trade name Cometriq, was granted marketing approval (November 2012) by the U.S. FDA for this indication. Cabozantinib which is a potent inhibitor of RET, MET and VEGF was evaluated in a double-blind placebo controlled trial. It was shown to improve overall survival by 5 months for the treated cohort vs. placebo, which was not statistically significant. However, cabozantinib was particularly effective in patients with the RET M918T mutation, extending overall survival by roughly 2 years, doubling survival vs. untreated patient (4 years vs. 2 year). Treatment with cabozantinib did require many dose reduction to mitigate side effects. It has been suggested that the trial dose of 140 mg was excessive, particularly in lower body mass patients. Ongoing trials have been scheduled to identify more optimal dosing regimes. Activity has been observed, in practice at doeses of 1.2 mg/kg.
The goal of newborn screening programs is to detect and start treatment within the first 1–2 weeks of life. Treatment consists of a daily dose of thyroxine, available as a small tablet. The generic name is levothyroxine, and several brands are available. The tablet is crushed and given to the baby with a small amount of water or milk. The most commonly recommended dose range is 10-15 μg/kg daily, typically 12.5 to 37.5 or 44 μg.
Within a few weeks, the T and TSH levels are rechecked to confirm that they are being normalized by treatment. As the child grows up, these levels are checked regularly to maintain the right dose. The dose increases as the child grows.
In terms of management, unless the syndrome results in other medical problems, treatment for endocrine dysfunction associated with pituitary malfunction is symptomatic and thus supportive;however, in some cases, surgery may be needed.