Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Thyroid hormone resistance syndrome is rare, incidence is variously quoted as 1 in 50,000 or 1 in 40,000 live births. More than 1000 individuals have been identified with thyroid hormone resistance, of which 85% had thyroid hormone beta receptor mutation.
Beta blockers, like Atenolol, are sometimes used to help suppress symptoms.
HAIR-AN syndrome as discussed earlier is caused by both gentic and environmental factors. It is found out that women affected by this syndrome or PCOS (polycystic ovary syndrome) are generally accompanied by obesity. Weight loss is most suggested way to combat this syndrome and is helpful for reducing insulin resistance of the body. It is also a good way to have a control on diet. This might help the body to refunction properly and show some resistance to HAIR-AN syndrome. "Suppression of gonadotropin with estrogen-progesterone oral contraceptives" or can say as reducing hyperandrogenism by the use of estoprogestatif can reduce production of androgen by ovaries by cutting down the LH (leutinizing hormone) level in body. Even their sex hormone binding to globulin increase is also responsible for decreasing body's bio-availability of testosterone. There are also few pills of new progestins, such as desogestrel and norgestimate. This pills appear to have fewer androgenic side effects and may be safer to use in persons with abnormal lipid levels or hirsutism. Some antiandrogenic agents can be also used alone or combining it with other oral pills.
"Spironolactone inhibit the actions of testosterone by binding to its receptors." The standard dose for its use is considered to be 50 to 100 mg twice a day. This might lead to irregular menstrual bleeding, which can be improved by oral contraceptives. Flutamide, an another antiandorgen that is used to treat HAIR-AN syndrome, but it has risk of hepatotoxicity. Finasteride is a 5α-reductase inhibitor which can reduces the conversion of testosterone to dihydrotestosterone. It is useful in the treatment of hirsutism with a dosages as low as 5 mg per day.
Insulin-resistant patients can also be treated with metformin which has shown promising results to reduce the insulin resistivity. Metformin improves peripheral tissue sensitivity to insulin but inhibits hepatic glucose formation. The drug reduces the levels of circulating insulin and androgens. Women have shown improved reproductive functioning after the use of metformin.
Growth hormone-releasing hormone (GHRH) is another releasing factor secreted by the hypothalamus. GHRH stimulates the pituitary gland to secrete growth hormone (GH), which has various effects on body growth and sexual development. Insufficient GH production may cause poor somatic growth, precocious puberty or gonadotropin deficiency, failure to initiate or complete puberty, and is often associated with rapid weight gain, low T, and low levels of sex hormones.
Desiccated thyroid extract is an animal-based thyroid gland extract, most commonly from pigs. It is a combination therapy, containing forms of T and T. It also contains calcitonin (a hormone produced in the thyroid gland involved in the regulation of calcium levels), T and T; these are not present in synthetic hormone medication. This extract was once a mainstream hypothyroidism treatment, but its use today is unsupported by evidence; British Thyroid Association and American professional guidelines discourage its use.
People with autoimmune hyperthyroidism should not eat foods high in iodine, such as edible seaweed and kelps.
From a public health perspective, the general introduction of iodized salt in the United States in 1924 resulted in lower disease, goiters, as well as improving the lives of children whose mothers would not have eaten enough iodine during pregnancy which would have lowered the IQs of their children.
There is little evidence whether there is a benefit from treating subclinical hypothyroidism, and whether this offsets the risks of overtreatment. Untreated subclinical hypothyroidism may be associated with a modest increase in the risk of coronary artery disease. A 2007 review found no benefit of thyroid hormone replacement except for "some parameters of lipid profiles and left ventricular function". There is no association between subclinical hypothyroidism and an increased risk of bone fractures, nor is there a link with cognitive decline.
Since 2008, consensus American and British opinion has been that in general people with TSH under 10 mIU/l do not require treatment. American guidelines recommend that treatment should be considered if the TSH is elevated but below 10 mIU/l in people with symptoms of hypothyroidism, detectable antibodies against thyroid peroxidase, a history of heart disease or are at an increased risk for heart disease.
Levothyroxine is a stereoisomer of thyroxine (T4) which is degraded much more slowly and can be administered once daily in patients with hypothyroidism. Natural thyroid hormone from pigs is sometimes also used, especially for people who cannot tolerate the synthetic version. Hyperthyroidism caused by Graves' disease may be treated with the thioamide drugs propylthiouracil, carbimazole or methimazole, or rarely with Lugol's solution. Additionally, hyperthyroidism and thyroid tumors may be treated with radioactive iodine. Ethanol injections for the treatment of recurrent thyroid cysts and metastatic thyroid cancer in lymph nodes can also be an alternative to surgery.
Radioiodine therapy with iodine-131 can be used to shrink the thyroid gland (for instance, in the case of large goiters that cause symptoms but do not harbor cancer—after evaluation and biopsy of suspicious nodules has been done), or to destroy hyperactive thyroid cells (for example, in cases of thyroid cancer). The iodine uptake can be high in countries with iodine deficiency, but low in iodine sufficient countries. To enhance iodine-131 uptake by the thyroid and allow for more successful treatment, TSH is raised prior to therapy in order to stimulate the existing thyroid cells. This is done either by withdrawal of thyroid hormone medication or injections of recombinant human TSH (Thyrogen), released in the United States in 1999. Thyrogen injections can reportedly boost uptake up to 50-60%. Radioiodine treatment can also cause hypothyroidism (which is sometimes the end goal of treatment) and, although rare, a pain syndrome (due to radiation thyroiditis).
The thyroid gland is an auxiliary organ to the hypothalamus-pituitary system. Thyrotropin-releasing hormone (TRH) produced by the hypothalamus signals to the pituitary to release thyroid-stimulating hormone (TSH), which then stimulates the thyroid to secrete T and T thyroid hormones. Secondary hypothyroidism occurs when TSH secretion from the pituitary is impaired, whereas tertiary hypothyroidism is the deficiency or inhibition of TRH.
Thyroid hormones are responsible for metabolic activity. Insufficient production of the thyroid hormones result in suppressed metabolic activity and weight gain. Hypothalamic disease may therefore have implications for obesity.
In endocrinology, medical emergencies include diabetic ketoacidosis, hyperosmolar hyperglycemic state, hypoglycemic coma, acute adrenocortical insufficiency, phaeochromocytoma crisis, hypercalcemic crisis, thyroid storm, myxoedema coma and pituitary apoplexy.
Emergencies arising from decompensated pheochromocytomas or parathyroid adenomas are sometimes referred for emergency resection when aggressive medical therapies fail to control the patient's state, however the surgical risks are significant, especially blood pressure lability and the possibility of cardiovascular collapse after resection (due to a brutal drop in respectively catecholamines and calcium, which must be compensated with gradual normalization). It remains debated when emergency surgery is appropriate as opposed to urgent or elective surgery after continued attempts to stabilize the patient, notably in view of newer and more efficient medications and protocols.
Surgery (thyroidectomy to remove the whole thyroid or a part of it) is not extensively used because most common forms of hyperthyroidism are quite effectively treated by the radioactive iodine method, and because there is a risk of also removing the parathyroid glands, and of cutting the recurrent laryngeal nerve, making swallowing difficult, and even simply generalized staphylococcal infection as with any major surgery. Some people with Graves' may opt for surgical intervention. This includes those that cannot tolerate medicines for one reason or another, people that are allergic to iodine, or people that refuse radioiodine.
If people have toxic nodules treatments typically include either removal or injection of the nodule with alcohol.
Treatment of HH is usually with hormone replacement therapy, consisting of androgen and estrogen administration in males and females, respectively.
The main strategies for the management of thyroid storm are reducing production and release of thyroid hormone, reducing the effects of thyroid hormone on tissues, replacing fluid losses, and controlling temperature. Thyroid storm requires prompt treatment and hospitalization. Often, admission to the intensive care unit is needed.
Iodine
Guidelines recommend the administration of inorganic iodide (potassium iodide or Lugol's iodine) to reduce the synthesis and release of thyroid hormone. Iodine reduces the synthesis of thyroid hormone via the Wolf-Chaikoff effect. Some guidelines recommend that iodine be administered after antithyroid medications are started, because iodine is also a substrate for the synthesis of thyroid hormone, and may worsen hyperthyroidism if administered without antithyroid medications.
Antithyroid Medications
Antithyroid drugs (propylthiouracil or methimazole) are used to reduce the synthesis and release of thyroid hormone. Propylthiouracil is preferred over methimazole due to its additional effects on reducing peripheral conversion of T4 to T3, however both are commonly used.
Beta Blockers
The administration of beta-1-selective beta blockers (e.g. propranolol) is recommended to reduce the effect of circulating thyroid hormone on end organs. In addition, propanolol at high doses also reduces peripheral conversion of T4 to T3, which is the more active form of thyroid hormone. Although previously unselective beta blockers (e.g., propranolol) have been suggested to be beneficial due to their inhibitory effects on peripheral deiodinases recent research suggests them to be associated with increased mortality. Therefore, cardioselective beta blockers may be favourable.
Corticosteroids
High levels of thyroid hormone result in a hypermetabolic state, which can result in increased breakdown of cortisol, a hormone produced by the adrenal gland. This results in a state of relative adrenal insufficiency, in which the amount of cortisol is not sufficient. Guidelines recommend that corticosteroids (hydrocortisone and dexamethasone are preferred over prednisolone or methylprednisolone) be administered to all patients with thyroid storm. However, doses should be altered for each individual patient to ensure that the relative adrenal insufficiency is adequately treated while minimizing the risk of side effects.
Supportive Measures
In high fever, temperature control is achieved with fever reducers such as paracetamol/acetaminophen and external cooling measures (cool blankets, ice packs). Dehydration, which occurs due to fluid loss from sweating, diarrhea, and vomiting, is treated with frequent fluid replacement. In severe cases, mechanical ventilation may be necessary. Any suspected underlying cause is also addressed.
Toxic multinodular goiter can be treated with antithyroid medications such as propylthiouracil or methimazole, radioactive iodine, or with surgery.
Another treatment option is injection of ethanol into the nodules.
Goitre is treated according to the cause. If the thyroid gland is producing too much T3 and T4, radioactive iodine is given to the patient to shrink the gland. If goitre is caused by iodine deficiency, small doses of iodide in the form of Lugol's Iodine or KI solution are given. If the goitre is associated with an underactive thyroid, thyroid supplements are used as treatment. In extreme cases, a partial or complete thyroidectomy is required.
Severe hypocalcaemia, a potentially life-threatening condition, is treated as soon as possible with intravenous calcium (e.g. as calcium gluconate). Generally, a central venous catheter is recommended, as the calcium can irritate peripheral veins and cause phlebitis. In the event of a life-threatening attack of low calcium levels or tetany (prolonged muscle contractions), calcium is administered by intravenous (IV) infusion. Precautions are taken to prevent seizures or larynx spasms. The heart is monitored for abnormal rhythms until the person is stable. When the life-threatening attack has been controlled, treatment continues with medicine taken by mouth as often as four times a day.
Long-term treatment of hypoparathyroidism is with vitamin D analogs and calcium supplementation, but may be ineffective in some due to potential renal damage. The N-terminal fragment of parathyroid hormone (PTH 1-34) has full biological activity. The use of pump delivery of synthetic PTH 1-34 provides the closest approach to physiologic PTH replacement therapy. Injections of recombinant human parathyroid hormone are available as treatment in those with low blood calcium levels.
Medications consist mostly of antiandrogens, drugs that block the effects of androgens like testosterone and dihydrotestosterone (DHT) in the body, and include:
- Spironolactone: An antimineralocorticoid with additional antiandrogenic activity at high dosages
- Cyproterone acetate: A dual antiandrogen and progestogen. In addition to single form, it is also available in some formulations of combined oral contraceptives at a low dosage (see below). It has a risk of liver damage.
- Flutamide: A pure antiandrogen. It has been found to possess equivalent or greater effectiveness than spironolactone, cyproterone acetate, and finasteride in the treatment of hirsutism. However, it has a high risk of liver damage and hence is no longer recommended as a first- or second-line treatment.
- Bicalutamide: A pure antiandrogen. It is effective similarly to flutamide but is much safer as well as better-tolerated.
- Birth control pills: Consist of an estrogen, usually ethinylestradiol, and a progestin. They are thought to work by 1) stimulating production of sex hormone-binding globulin in the liver, which decreases free concentrations of testosterone in the blood; and by 2) suppressing luteinizing hormone (LH) secretion from the pituitary gland, which decreases production of testosterone by the gonads. Hence, they are functional antiandrogens. In addition, certain birth control pills contain a progestin that also has antiandrogenic activity. Examples include birth control pills containing cyproterone acetate, chlormadinone acetate, drospirenone, and dienogest.
- Finasteride and dutasteride: 5α-Reductase inhibitors. They inhibit the production of the potent androgen DHT.
- GnRH analogues: Suppress androgen production by the gonads and reduce androgen concentrations to castrate levels.
- Metformin: Antihyperglycemic drug used for diabetes mellitus. However, it is also effective in treatment of hirsutism associated with insulin resistance (e.g. polycystic ovary syndrome)
- Eflornithine: Blocks putrescine that is necessary for the growth of hair follicles
In cases of hyperandrogenism specifically due to congenital adrenal hyperplasia, administration of glucocorticoids will return androgen levels to normal.
A pituitary disease is a disorder primarily affecting the pituitary gland.
The main disorders involving the pituitary gland are:
Overproduction or underproduction of a pituitary hormone will affect the respective end-organ. For example, insufficient production (hyposecretion) of thyroid stimulating hormone (TSH) in the pituitary gland will cause hypothyroidism, while overproduction (hypersecretion) of TSH will cause hyperthyroidism. Thyroidisms caused by the pituitary gland are less common though, accounting for less than 10% of all hypothyroidism cases and much less than 1% of hyperthyroidism cases.
Goitre is more common among women, but this includes the many types of goitre caused by autoimmune problems, and not only those caused by simple lack of iodine.
Many women with unwanted hair seek methods of hair removal. However, the causes of the hair growth should be evaluated by a physician, who can conduct blood tests, pinpoint the specific origin of the abnormal hair growth, and advise on the treatment.
All causes in this category are genetic, and generally very rare. These include mutations to the "SF1" transcription factor, congenital adrenal hypoplasia due to "DAX-1" gene mutations and mutations to the ACTH receptor gene (or related genes, such as in the Triple A or Allgrove syndrome). "DAX-1" mutations may cluster in a syndrome with glycerol kinase deficiency with a number of other symptoms when "DAX-1" is deleted together with a number of other genes.
Endocrine diseases are disorders of the endocrine system. The branch of medicine associated with endocrine disorders is known as endocrinology.
During pregnancy, women may want to see both an OB/GYN and an endocrinologist, a doctor who treats people with hormone problems. Levothyroxine is safe to use during pregnancy and necessary for the health of the baby. Women with Hashimoto's disease or an underactive thyroid who are taking levothyroxine before pregnancy may need a higher dose to maintain normal thyroid function. Clinicians may check thyroid function every 6 to 8 weeks during pregnancy. After delivery, hormone levels usually go back to the pre-pregnancy level.
Most children born with congenital hypothyroidism and correctly treated with thyroxine grow and develop normally in all respects. Even most of those with athyreosis and undetectable T levels at birth develop with normal intelligence, although as a population academic performance tends to be below that of siblings and mild learning problems occur in some.
Congenital hypothyroidism is the most common preventable cause of intellectual disability. Few treatments in the practice of medicine provide as large a benefit for as small an effort.
The developmental quotient (DQ, as per Gesell Developmental Schedules) of children with hypothyroidism at age 24 months that have received treatment within the first 3 weeks of birth is summarised below: