Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Jeavons syndrome is a lifelong disorder, even if seizures are well controlled with antiepileptic drugs. Men have a better prognosis than women. There is a tendency for photosensitivity to disappear in middle age, but eyelid myoclonia persists. It is highly resistant to treatment and occurs many times a day, often without apparent absences and even without demonstrable photosensitivity.
Based on anecdotal evidence, the drugs of choice are those used for other idiopathic generalized epilepsies. Valproate alone, or most probably in combination with clonazepam, levetiracetam, lamotrigine or ethosuximide, appears to be the most effective regimen. The choice of the second drug depends on the main seizure type. Clonazepam is highly efficacious in eyelid myoclonia and myoclonic jerks. Of the newer antiepileptic drugs, levetiracetam may be the most effective, because of its anti myoclonic and anti photosensitive properties. Lamotrigine is very effective in absence seizures but may exaggerate myoclonic jerks.
Contra-indicated drugs are: Carbamazepine, gabapentin, oxcarbazepine, phenytoin, pregabalin, tiagabine and vigabatrin.
Lifestyle and avoidance of seizure precipitants are important. Non-pharmacological treatments used for photosensitive patients (such as wearing special glasses or the newly commercially available blue Z1 lenses) should be employed in Jeavons syndrome when photosensitivity persists.
The prognosis of ICOE-G is unclear, although available data indicate that remission occurs in 50–60% of patients within 2–4 years of onset. Seizures show a dramatically good response to carbamazepine in more than 90% of patients. However, 40–50% of patients may continue to have visual seizures and infrequent secondarily generalized convulsions, particularly if they have not been appropriately treated with antiepileptic drugs.
Patients with ICOE-G need prophylactic treatment mainly with carbamazepine or other antiepileptic drugs licensed for focal seizures. A slow reduction in the dose of medication 2 or 3 years after the last visual or other minor or major seizure should be advised, but if visual seizures reappear, treatment should be restored.
Valproic acid is the first line drug choice for reducing generalised seizures and myoclonus. Levetiracetam is also effective for both generalised seizures and myoclonus. Clonazepam and high-dose piracetam can alleviate myoclonus. Phenytoin can worsen seizures and may speed up neurodegeneration; carbamazepine, oxcarbazepine, tiagabine, vigabatrin, gabapentin and pregabalin may worsen myoclonus and myoclonic seizures. Other common medications to treat ULD include topiramate and zonisamide. If an individual with Unverricht–Lundborg disease is particularly sensitive to a certain type of stimulus, it is also beneficial to reduce the patient's exposure to that stimulus in order to reduce the likelihood of seizures. Since ULD is progressive and may not get better over time, depression has been documented in many cases, so providing a strong support group of friends, family, and even other individuals with ULD is very beneficial.
For early Unverricht–Lundborg disease patients, the disease would begin to progress early and lack of effective treatment meant a quick progression. In many cases the patient would require a wheelchair for mobility, and would die at a young age.
However, increased knowledge about the disease and improved treatment and medication has led to a dramatic improvement in prognosis for individuals with ULD. Antiepileptic drugs reduce the occurrence of seizures and myoclonus, which leads to a decrease in the damage caused in the brain due to seizures and the body due to falls resulting from the seizures. As a result, individuals with Unverricht–Lundborg disease are now much less likely to end up in a wheelchair, which eliminates the chance of complications involved with being a wheelchair user. All these factors have increased the outlook for patients. Due to the progressive nature of the disease, depression is prevalent, but support of family and friends as well as proper treatment can help. While early patients with ULD had a life expectancy of around 24 years, there have recently been reported cases of individuals living to near-normal ages.
No cure is available for PSE, although the sensitivity of some patients may diminish over time. Medical treatment is available to reduce sensitivity, with sodium valproate being commonly prescribed. Patients can also learn to avoid situations in which they might be exposed to stimuli that trigger seizures and/or take steps to diminish their sensitivity (as by covering one eye) if they are unavoidably exposed. These actions together can reduce the risk of seizures to almost zero for many PSE patients.
Some PSE patients have trigger stimuli that are so specific that they are never likely to encounter them in real life. Their PSE may only be discovered by accident in an unusual situation or during examination for other complaints.
When functioning correctly, mains-powered fluorescent lighting has a flicker rate sufficiently high (twice the mains frequency, typically 100 Hz or 120 Hz) to reduce the occurrence of problems. However, a faulty fluorescent lamp can flicker at a much lower rate and trigger seizures. Newer high-efficiency compact fluorescent lamps (CFL) with electronic ballast circuits operate at much higher frequencies (10–20 kHz) not normally perceivable by the human eye, though defective lights can still cause problems.
The Job Accommodation Network lists reduction or elimination of fluorescent lighting as an appropriate accommodation for many conditions including epilepsy. The Canadian Department of Labour states that the newer lights are problematic for fewer people.
Because most patients respond to steroids or immunosuppressant treatment, this condition is now also referred to as steroid-responsive encephalopathy.
Initial treatment is usually with oral prednisone (50–150 mg/day) or high-dose IV methylprednisolone (1 g/day) for 3–7 days. Thyroid hormone treatment is also included if required.
Failure of some patients to respond to this first line treatment has produced a variety of alternative treatments including azathioprine, cyclophosphamide, chloroquine, methotrexate, periodic intravenous immunoglobulin and plasma exchange. There have been no controlled trials so the optimal treatment is not known.
Seizures, if present, are controlled with typical antiepileptic agents.
Hemicrania continua generally responds only to indomethacin 25–300 mg daily, which must be continued long term. Unfortunately, gastrointestinal side effects are a common problem with indomethacin, which may require additional acid-suppression therapy to control.
In patients who are unable to tolerate indomethacin, the use of celecoxib 400–800 mg per day (Celebrex) and rofecoxib 50 mg per day (Vioxx - no longer available) have both been shown to be effective and are likely to be associated with fewer GI side effects. There have also been reports of two patients who were successfully managed with topiramate 100–200 mg per day (Topamax) although side effects with this treatment can also prove problematic.
Greater Occipital Nerve [GON] block comprising 40 mg Depomedrone and 10mls of 1% Lignocaine injected into the affected nerve is effective, up to a period of approximately three months. Changing the 'cocktail' to include [for example] 10mls of .5% Marcaine and changing to 2% Lignocaine, whilst in theory should increase the longevity, renders the injection completely ineffective. See 4.2 Posology and method of administration [flocculation]
Occipital nerve stimulation may be highly effective when other treatments fail to relieve the intractable pain.
Duration of treatment is usually between 2 and 25 years. Earlier reports suggested that 90% of cases stay in remission after discontinuation of treatment; however, this is at odds with more recent studies which suggest that relapse commonly occurs after initial high-dose steroid treatment. Left untreated, this condition can result in coma and death.
The opioid antagonist naloxone allowed a woman with congenital insensitivity to pain to experience it for the first time. Similar effects were observed in Na1.7 null mice treated with naloxone. As such, opioid antagonists like naloxone and naltrexone may be effective in treating the condition.
Congenital insensitivity to pain is found in Vittangi, a village in Kiruna Municipality in northern Sweden, where nearly 40 cases have been reported. A few Americans also have it.
Nuclear factor-kappa B Essential Modulator (NEMO) deficiency syndrome is a rare type of primary immunodeficiency disease that has a highly variable set of symptoms and prognoses. It mainly affects the skin and immune system but has the potential to affect all parts of the body, including the lungs, urinary tract and gastrointestinal tract. It is a monogenetic disease caused by mutation in the IKBKG gene (IKKγ, also known as the NF-κB essential modulator, or NEMO). NEMO is the modulator protein in the IKK inhibitor complex that, when activated, phosphorylates the inhibitor of the NF-κB transcription factors allowing for the translocation of transcription factors into the nucleus.
The link between IKBKG mutations and NEMO deficiency was identified in 1999. IKBKG is located on the X chromosome and is X-linked therefore this disease predominantly affects males, However females may be genetic carriers of certain types of mutations. Other forms of the syndrome involving NEMO-related pathways can be passed on from parent to child in an autosomal dominant manner – this means that a child only has to inherit the faulty gene from one parent to develop the condition. This autosomal dominant type of NEMO deficiency syndrome can affect both boys and girls.
Hemicrania was mentioned in 1881 in The Therapeutic Gazette Vol. 2, by G.S.Davis, and the incident has been cited in King's American Dispensatory (1898 and later editions) in the description of the strong analgesic Jamaican Dogwood, a relatively low dose of which reportedly produced convulsions and prolonged respiratory depression over six hours in an elderly woman with this condition.
In newer times, Hemicrania continua was described in 1981; at that time around 130 cases were described in the literature. However, rising awareness of the condition has led to increasingly frequent diagnosis in headache clinics, and it seems that it is not as rare as these figures would imply. The condition occurs more often in women than men and tends to present first in adulthood, although it has also been reported in children as young as 5 years old.
Diagnosis
Originally NEMO deficiency syndrome was thought to be a combination of Ectodermal Dysplasia (ED) and a lack of immune function, but is now understood to be more complex disease. NEMO Deficiency Syndrome may manifest itself in the form of several different diseases dependent upon mutations of the IKBKG gene such as Incontinentia pigmenti or Ectodermal dysplasia.
The clinical presentation of NEMO deficiency is determined by three main symptoms:
1. Susceptibility to pyogenic infections in the form of severe local inflammation
2. Susceptibility to mycobacterial infection
3. Symptoms of Ectodermal Dysplasia
To determine whether or not patient has NEMO deficiency, an immunologic screen to test immune system response to antigen may be used although a genetic test is the only way to be certain as many individuals respond differently to the immunological tests.
Commonly Associated Diseases
NEMO deficiency syndrome may present itself as Incontinentia pigmenti or Ectodermal dysplasia depending on the type of genetic mutation present, such as if the mutation results in the complete loss of gene function or a point mutation.
Amorphic genetic mutations in the IKBKG gene, which result in the loss of gene function, typically present themselves as Incontinetia Pigmenti (IP). Because loss of NEMO function is lethal, only heterozygous females or males with XXY karyotype or mosaicism for this gene survive and exhibit symptoms of Incontinetia Pigmenti, such as skin lesions and abnormalities in hair, teeth, and nails. There are a variety of mutations that may cause the symptoms of IP, however, they all involve the deletion of exons on the IKBKG gene.
Hypomorphic genetic mutations in the IKBKG gene, resulting in a partial loss of gene function, cause the onset of Anhidrotic ectodermal dysplasia with Immunodeficiency (EDA-IP). The lack of NEMO results in a decreased levels of NF-κB transcription factor translocation and gene transcription, which in turn leads to a low level of immunoglobulin production. Because NF-κB translocation is unable to occur without proper NEMO function, the cell signaling response to immune mediators such as IL-1β, IL-18, and LPS are ineffective thus leading to a compromised immune response to various forms of bacterial infections.
Treatment
The aim of treatment is to prevent infections so children will usually be started on immunoglobulin treatment. Immunoglobulin is also known as IgG or antibody. It is a blood product and is given as replacement for people who are unable to make their own antibodies. It is the mainstay of treatment for patients affected by primary antibody deficiency. In addition to immunoglobulin treatment, children may need to take antibiotics or antifungal medicines to prevent infections or treat them promptly when they occur. Regular monitoring and check-ups will help to catch infections early. If an autoimmune response occurs, this can be treated with steroid and/or biologic medicines to damp down the immune system so relieving the symptoms.
In some severely affected patients, NEMO deficiency syndrome is treated using a bone marrow or blood stem cell transplant. The aim is to replace the faulty immune system with an immune system from a healthy donor.
In a patient fully withdrawn from opioids, going back to an intermittent schedule or maintenance dosing protocol, a fraction of the old tolerance level will rapidly develop, usually starting two days after therapy is resumed and, in general, leveling off after day 7. Whether this is caused directly by opioid receptors modified in the past or affecting a change in some metabolic set-point is unclear. Increasing the dose will usually restore efficacy; relatively rapid opioid rotation may also be of use if the increase in tolerance continues.
Inhalation of an agonist for the beta-2 adrenergic receptor, such as Salbutamol, Albuterol (US), is the most common treatment for asthma. Polymorphisms of the beta-2 receptor play a role in tachyphylaxis. Expression of the Gly-16 allele (glycine at position 16) results in greater receptor downregulation by endogenous catecholamines at baseline compared to Arg-16. This results in a greater single-use bronchodilator response in individuals homozygous for Arg-16 compared to Gly-16 homozygotes. However, with regular beta-2 agonist use, asthmatic Arg-16 individuals experience a significant decline in bronchodilator response. This decline does not occur in Gly-16 individuals. It has been proposed that the tachyphylactic effect of regular exposure to exogenous beta-2 agonists is more apparent in Arg-16 individuals because their receptors have not been downregulated prior to agonist administration.
In the past, treatment options were limited to supportive medical therapy. Nowadays neonatal encephalopathy is treated using hypothermia therapy.
Attacks are self-limiting, and require analgesia and NSAIDs (such as diclofenac). Colchicine, a drug otherwise mainly used in gout, decreases attack frequency in FMF patients. The exact way in which colchicine suppresses attacks is unclear. While this agent is not without side effects (such as abdominal pain and muscle pains), it may markedly improve quality of life in patients. The dosage is typically 1–2 mg a day. Development of amyloidosis is delayed with colchicine treatment. Interferon is being studied as a therapeutic modality. Some advise discontinuation of colchicine before and during pregnancy, but the data are inconsistent, and others feel it is safe to take colchicine during pregnancy.
Approximately 5–10% of FMF cases are resistant to colchicine therapy alone. In these cases, adding anakinra to the daily colchicine regimen has been successful.
HIE is a major predictor of neurodevelopmental disability in term infants. 25 percent have permanent neurological deficits.
It can result in developmental delay or periventricular leukomalacia.
X-linked congenital stationary night blindness (CSNB) is a rare X-linked non-progressive retinal disorder. It has two forms, complete, also known as type-1 (CSNB1), and incomplete, also known as type-2 (CSNB2), depending on severity. In the complete form (CSNB1), there is no measurable rod cell response to light, whereas this response is measurable in the incomplete form. Patients with this disorder have difficulty adapting to low light situations due to impaired photoreceptor transmission. These patients also often have reduced visual acuity, myopia, nystagmus, and strabismus. CSNB1 is caused by mutations in the gene NYX, which encodes a protein involved in retinal synapse formation or synaptic transmission. CSNB2 is caused by mutations in the gene CACNA1F, which encodes a voltage-gated calcium channel Ca1.4.
Not all Congenital Stationary Night Blindness (CSNB) are inherited in X-linked pattern. There are also dominant and recessive inheritance patterns for CSNB.
Familial Mediterranean fever (FMF) is a hereditary inflammatory disorder. FMF is an autoinflammatory disease caused by mutations in Mediterranean fever gene, which encodes a 781–amino acid protein called pyrin. While all ethnic groups are susceptible to FMF, it "usually occurs in people of Mediterranean origin—including Sephardic Jews, Mizrahi Jews, Armenians, Azerbaijanis, Arabs, Greeks, Turks and Italians".
The disorder has been given various names, including familial paroxysmal polyserositis, periodic peritonitis, recurrent polyserositis, benign paroxysmal peritonitis, periodic disease or periodic fever, Reimann periodic disease or Reimann's syndrome, Siegal-Cattan-Mamou disease, and Wolff periodic disease. Note that "periodic fever" can also refer to any of the periodic fever syndromes.
Should the viral progression be diagnosed during stage 1 (even during late stage 1 when stage 2 symptoms start to manifest themselves) then treatment to combat the infection can be administered successfully—there is no cure for SSPE but if it is caught early enough then the sufferer can respond to the treatment and prevent symptom recurrence by taking the medication for the rest of their life. The treatment for the SSPE infection is the immunomodulator interferon and specific antiviral medication—ribavirin and inosine pranobex are specifically used to greater effect than antivirals such as amantadine.
For those who have progressed to stage 2 or beyond, the disease is incurable. For patients in the terminal phase of the disease there is a palliative care and treatment scheme—this involves anticonvulsant therapy (to help with the body's progressive loss of control of the nervous system causing gradually more intensive spasms/convulsions) alongside supportive measures to help maintain vital functioning. It is fairly standard as the infection spreads and symptoms intensify that feeding tubes need to be inserted to keep a nutritional balance. As the disease progresses to its most advanced phase, the patient will need constant nursing as normal bodily function declines to the complete collapse of the nervous system.
Combinations of treatment for SSPE include:
- Oral inosine pranobex (oral isoprinosine) combined with intrathecal (injection through a lumbar puncture into the spinal fluid) or intraventricular interferon alpha.
- Oral inosine pranobex (oral isoprinosine) combined with interferon beta.
- Intrathecal interferon alpha combined with intravenous ribavirin.
Several approaches have been taken to address tumor hypoxia. Some companies tried to develop drugs that are activated in hypoxic environments (Novacea, Inc. Proacta, Inc, and Threshold Pharmaceuticals, Inc), while others are currently seeking to reduce tumor hypoxia (Diffusion Pharmaceuticals, Inc. and NuvOx Pharma, LLC).
Several companies have tried to develop drugs that are activated in hypoxic environments. These drug candidates target levels of hypoxia that are common in tumors but are rare in normal tissues. The hypoxic zones of tumors generally evade traditional chemotherapeutic agents and ultimately contribute to relapse. In the literature, hypoxia has been demonstrated to be associated with a worse prognosis, making it a determinant of cancer progression and therapeutic response. Several review articles summarize the current status of hypoxic cytotoxins (hypoxia activated prodrugs). Companies that have tried drugs that are activated in hypoxic environments included Novacea, Inc. Proacta, and Threshold Pharmaceuticals. Novacea Inc discontinued development of its hypoxia activated drug. Proacta’s drug PR610 failed a Phase I clinical trial due to toxicity. Threshold Pharmaceuticals discontinued the hypxia activated prodrug, TH-302, after Phase III trials failed to show statistically significant overall survival.
Niacinamide, the active form of vitamin B, acts as a chemo- and radio-sensitizing agent by enhancing tumor blood flow, thereby reducing tumor hypoxia. Niacinamide also inhibits poly(ADP-ribose) polymerases (PARP-1), enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy. As of August 2016, no clinical trials appear to be in progress for this indication.
Another approach to the treatment of tumor hypoxia is the use of an oxygen diffusion-enhancing compound to reoxygenate the hypoxic zones of tumors. The developer of oxygen diffusion-enhancing compounds, Diffusion Pharmaceuticals, tested its lead compound, trans sodium crocetinate (TSC), in a Phase II clinical trial in 59 patients newly diagnosed with glioblastoma multiforme. The results of the Phase II showed that 36% of the full-dose TSC patients were alive at 2 years, compared with historical survival values ranging from 27% to 30% for the standard of care. The main endpoint of the trial was survival at two years, not overall survival.
Another drug in development that is designed to reduce tumor hypoxia is NuvOx Pharma’s NVX-108. NVX-108 is a formulation of the perfluorocarbon, dodecafluoropentane (DDFPe). NVX-108 is injected intravenously, flows through the lungs and picks up oxygen, then flows through the arteries and releases oxygen in the precense of hypoxic tissue. A Phase Ib/II clinical trial is in progress for newly diagnosed glioblastoma multiforme. Early results have shown reversal of tumor hypoxia, and the trial continues to progress.