Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
If the underlying cause of the hypocalcemia can be addressed, the hyperparathyroidism will resolve. In people with chronic renal failure, treatment consists of dietary restriction of phosphorus, supplements with an active form of vitamin D such as calcitriol, doxercalciferol, paricalcitol, etc. and phosphate binders which can be divided into calcium-based and non-calcium based.
Extended Release Calcifediol was recently approved by the FDA as a treatment for secondary hyperparathyroidism (SHPT) in adults with stage 3 or 4 chronic �kidney disease (CKD) and low vitamin D blood levels (25-hydroxyvitamin D less than 30 ng/mL). It can help treat SHPT by increasing Vitamin D levels and lowering parathyroid hormone or PTH. It is �not for patients with stage 5 CKD or on dialysis.
In the treatment of secondary hyperparathyroidism due to chronic kidney disease on dialysis calcimimetics do not appear to affect the risk of early death. It does decrease the need for a parathyroidectomy but caused more issues with low blood calcium levels and vomiting.
Most people with hyperparathyroidism secondary to chronic kidney disease will improve after renal transplantation, but many will continue to have a degree of residual hyperparathyroidism (tertiary hyperparathyroidism) post-transplant with associated risk of bone loss, etc.
No treatment is generally required, as bone demineralisation and kidney stones are relatively uncommon in the condition.
Treatment depends entirely on the type of hyperparathyroidism encountered.
People with primary hyperparathyroidism who are symptomatic benefit from surgery to remove the parathyroid tumor (parathyroid adenoma). Indications for surgery are as follows:
- Symptomatic hyperparathyroidism
- Asymptomatic hyperparathyroidism with any of the following:
- 24-hour urinary calcium > 400 mg (see Foot Note, below)
- serum calcium > 1 mg/dL above upper limit of normal
- Creatinine clearance > 30% below normal for patient's age
- Bone density > 2.5 standard deviations for below peak (i.e., T-score of -2.5)
- People age < 50
Surgery can rarely result in hypoparathyroidism.
If left untreated, the disease will progress to tertiary hyperparathyroidism, where correction of the underlying cause will not stop excess PTH secretion, i.e. parathyroid gland hypertrophy becomes irreversible. In contrast with secondary hyperparathyroidism, tertiary hyperparathyroidism is associated with hypercalcemia rather than hypocalcemia.
The surgical removal of one or more of the parathyroid glands is known as a parathyroidectomy; this operation was first performed in 1925. The symptoms of the disease, listed above, are indications for surgery. Surgery reduces all cause mortality as well as resolving symptoms. However, cardiovascular mortality is not significantly reduced.
The 2002 NIH Workshop on Asymptomatic Primary Hyperparathyroidism developed criteria for surgical intervention . The criteria were revised at the Third International Workshop on the Management of Asymptomatic Primary Hyperparathyroidism . These criteria were chosen on the basis of clinical experience and observational and clinical trial data as to which patients are more likely to have end-organ effects of primary hyperparathyroidism (nephrolithiasis, skeletal involvement), disease progression if surgery is deferred, and the most benefit from surgery. The panel emphasized the need for parathyroidectomy to be performed by surgeons who are highly experienced and skilled in the operation. The Third International Workshop guidelines concluded that surgery is indicated in asymptomatic patients who meet any one of the following conditions:
- Serum calcium concentration of 1.0 mg/dL (0.25 mmol/L) or more above the upper limit of normal
- Creatinine clearance that is reduced to <60 mL/min
- Bone density at the hip, lumbar spine, or distal radius that is more than 2.5 standard deviations below peak bone mass (T score <-2.5) and/or previous fragility fracture
- Age less than 50 years
Operative intervention can be delayed in patients over 50 years of age who are asymptomatic or minimally symptomatic and who have serum calcium concentrations <1.0 mg/dL (0.2 mmol/L) above the upper limit of normal, and in patients who are medically unfit for surgery
More recently, three randomized controlled trials have studied the role of surgery in patients with asymptomatic hyperparathyroidism. The largest study reported that surgery resulted in an increase in bone mass, but no improvement in quality of life after one to two years among patients in the following groups:
- Untreated, asymptomatic primary hyperparathyroidism
- Serum calcium between 2.60–2.85 mmol/liter (10.4–11.4 mg/dl)
- Age between 50 and 80 yr
- No medications interfering with Ca metabolism
- No hyperparathyroid bone disease
- No previous operation in the neck
- Creatinine level < 130 µmol/liter (<1.47 mg/dl)
Two other trials reported improvements in bone density and some improvement in quality of life with surgery.
Medications that are sometimes required include estrogen replacement therapy in postmenopausal women and bisphosphonates. Bisphosphonates may improve bone turnover.
Newer medications termed "calcimimetics" used in secondary hyperparathyroidism are now being used in primary hyperparathyroidism. Calcimimetics reduce the amount of parathyroid hormone released by the parathyroid glands. They are recommended in patients in whom surgery is inappropriate.
Treatment includes spironolactone, a potassium-sparing diuretic that works by acting as an aldosterone antagonist.
Hypoaldosteronism may result in hyperkalemia and is the cause of 'type 4 renal tubular acidosis', sometimes referred to as hyperkalemic RTA or tubular hyperkalemia. However, the acidosis, if present, is often mild. It can also cause urinary sodium wasting, leading to volume depletion and hypotension.
When adrenal insufficiency develops rapidly, the amount of Na+ lost from the extracellular fluid exceeds the amount excreted in the urine, indicating that Na+ also must be entering cells. When the posterior pituitary is intact, salt loss exceeds water loss, and the plasma Na+ falls. However, the plasma volume also is reduced, resulting in hypotension, circulatory insufficiency, and, eventually, fatal shock. These changes can be prevented to a degree by increasing the dietary NaCl intake. Rats survive indefinitely on extra salt alone, but in dogs and most humans, the amount of supplementary salt needed is so large that it is almost impossible to prevent eventual collapse and death unless mineralocorticoid treatment is also instituted.
High phosphate levels can be avoided with phosphate binders and dietary restriction of phosphate. If the kidneys are operating normally, a saline diuresis can be induced to renally eliminate the excess phosphate. In extreme cases, the blood can be filtered in a process called hemodialysis, removing the excess phosphate.
Initial therapy:
- hydration, increasing salt intake, and forced diuresis.
- hydration is needed because many patients are dehydrated due to vomiting or kidney defects in concentrating urine.
- increased salt intake also can increase body fluid volume as well as increasing urine sodium excretion, which further increases urinary potassium excretion.
- after rehydration, a loop diuretic such as furosemide can be given to permit continued large volume intravenous salt and water replacement while minimizing the risk of blood volume overload and pulmonary oedema. In addition, loop diuretics tend to depress calcium reabsorption by the kidney thereby helping to lower blood calcium levels
- can usually decrease serum calcium by 1–3 mg/dL within 24 hours
- caution must be taken to prevent potassium or magnesium depletion
The goal of therapy is to treat the hypercalcaemia first and subsequently effort is directed to treat the underlying cause.
Tertiary hyperparathyroidism is a state of excessive secretion of parathyroid hormone (PTH) after a long period of secondary hyperparathyroidism and resulting in a high blood calcium level. It reflects development of autonomous (unregulated) parathyroid function following a period of persistent parathyroid stimulation.
The basis of treatment is still prevention in chronic kidney failure, starting medication and dietary restrictions long before dialysis treatment is initiated. Cinacalcet has greatly reduced the number of patients who ultimately require surgery for secondary hyperparathyroidism; however, approximately 5% of patients do not respond to medical therapy.
When secondary hyperparathyroidism is corrected and the parathyroid glands remain hyperfunctioning, it becomes tertiary hyperparathyroidism. The treatment of choice is surgical removal of three and one half parathyroid glands.
Most cases of FHH are associated with loss of function mutations in the calcium-sensing receptor (CaSR) gene, expressed in parathyroid and kidney tissue. These mutations decrease the receptor's sensitivity to calcium, resulting in reduced receptor stimulation at normal serum calcium levels. As a result, inhibition of parathyroid hormone release does not occur until higher serum calcium levels are attained, creating a new equilibrium. This is the opposite of what happens with the CaSR sensitizer, cinacalcet. Functionally, parathyroid hormone (PTH) increases calcium resorption from the bone and increases phosphate excretion from the kidney which increases serum calcium and decreases serum phosphate. Individuals with FHH, however, typically have normal PTH levels, as normal calcium homeostasis is maintained, albeit at a higher equilibrium set point. As a consequence, these individuals are not at increased risk of the complications of hyperparathyroidism.
Another form has been associated with chromosome 3q.
Treatment for renal osteodystrophy includes the following:
- calcium and/or native vitamin D supplementation
- restriction of dietary phosphate (especially inorganic phosphate contained in additives)
- phosphate binders such as calcium carbonate, calcium acetate, sevelamer hydrochloride or carbonate, lanthanum carbonate, sucroferric oxyhydroxide, ferric citrate among others
- active forms of vitamin D (calcitriol, alfacalcidol, paricalcitol, maxacalcitol, doxercalciferol, among others)
- cinacalcet
- renal transplantation
- haemodialysis five times a week is thought to be of benefit
- parathyroidectomy for symptomatic medication refractive end stage disease
In endocrinology, the terms 'primary' and 'secondary' are used to describe the abnormality (e.g., elevated aldosterone) in relation to the defect, "i.e.", the tumor's location. Hyperaldosteronism can also be caused by plant poisoning, where the patient has been exposed to too much licorice. Licorice is a perennial herb that is used in making candies and in cooking other desserts because of its sweet taste. It contains the chemical glycyrrhizin, which has medicinal uses, but at higher levels it can be toxic. It has the potential for causing problems with sodium and potassium in the body. It also interferes with the enzyme in the kidneys that converts cortisol to cortisone.
Medical management of OFC consists of Vitamin D treatment, generally alfacalcidol or calcitriol, delivered intravenously. Studies have shown that in cases of OFC caused by either end-stage renal disease or primary hyperparathyoidism, this method is successful not only in treating underlying hyperparathyoidism, but also in causing the regression of brown tumors and other symptoms of OFC.
Almost all who undergo parathyroidectomy experience increased bone density and repair of the skeleton within weeks. Additionally, patients with OFC who have undergone parathyroidectomy begin to show regression of brown tumors within six months. Following parathyroidectomy, hypocalcaemia is common. This results from a combination of suppressed parathyroid glands due to prolonged hypercalcaemia, as well as the need for calcium and phosphate in the mineralization of new bone.
Thirty percent of patients with OFC caused by parathyroid carcinoma who undergo surgery see a local recurrence of symptoms. The post-surgical survival rate hovers around seven years, while patients who do not undergo surgery have a survival rate of around five years.
Signs and symptoms include ectopic calcification, secondary hyperparathyroidism, and renal osteodystrophy. Abnormalities in phosphate metabolism such as hyperphosphatemia are included in the definition of the new chronic kidney disease-mineral and bone disorder (CKD-MBD).
Hypocalcemia is common and can occur unnoticed with no symptoms or, in severe cases, can have dramatic symptoms and be life-threatening. Hypocalcemia can be parathyroid related or vitamin D related. Parathyroid related hypocalcemia includes post-surgical hypoparathyroidism, inherited hypoparathyroidism, pseudohypoparathyroidism, and pseudo-pseudohypoparathyroidism. Post-surgical hypoparathyroidism is the most common form, and can be temporary (due to suppression of tissue after removal of a malfunctioning gland) or permanent, if all parathyroid tissue has been removed. Inherited hypoparathyroidism is rare and is due to a mutation in the calcium sensing receptor. Pseudohypoparathyroidism is maternally inherited and is categorized by hypocalcemia and hyperphosphatemia. Finally, pseudo-pseudohypoparathyroidism is paternally inherited. Patients display normal parathyroid hormone action in the kidney, but exhibit altered parathyroid hormone action in the bone.
Vitamin D related hypocalcemia may be associated with a lack of vitamin D in the diet, a lack of sufficient UV exposure, or disturbances in renal function. Low vitamin D in the body can lead to a lack of calcium absorption and secondary hyperparathyroidism (hypocalcemia and raised parathyroid hormone). Symptoms of hypocalcemia include numbness in fingers and toes, muscle cramps, irritability, impaired mental capacity and muscle twitching.
Recovery from renal osteodystrophy has been observed following kidney transplantation. Renal osteodystrophy is a chronic condition with a conventional hemodialysis schedule. Nevertheless, it is important to consider that the broader concept of CKD-MBD, which includes renal osteodystrophy, is not only associated with bone disease and increased risk of fractures but also with cardiovascular calcification, poor quality of life and increased morbidity and mortality in CKD patients (the so-called bone-vascular axis). Actually, bone may now be considered a new endocrine organ at the heart of CKD-MBD.
Standard intravenous preparations of potassium phosphate are available and are routinely used in malnourished patients and alcoholics. Oral supplementation is also useful where no intravenous treatment are available. Historically one of the first demonstrations of this was in concentration camp victims who died soon after being re-fed: it was observed that those given milk (high in phosphate) had a higher survival rate than those who did not get milk.
Monitoring parameters during correction with IV phosphate
- Phosphorus levels should be monitored after 2 to 4 hours after each dose, also monitor serum potassium, calcium and magnesium. Cardiac monitoring is also advised.
The prognosis of nephrocalcinosis is determined by the underlying cause. Most cases of nephrocalcinosis do not progress to end stage renal disease, however if not reated it can lead to renal dysfunction this includes primary hyperoxaluria, hypomagnesemic hypercalciuric nephrocalcinosis and Dent's disease. Once nephrocalcinosis is found, it is unlikely to be reversed, however, partial reversal has been reported in patients who have had successful treatment of hypercalciuria and hyperoxaluria following corrective intestinal surgery.
Increase the water intake to prevent oxalates to precipitate .
Minimize dietary intake of oxalates by restricting the intake of leafy vegetables , sesame seeds , tea , cocoa , beet root , spinach , rhubarb , etc.
There are several causes for this condition, including adrenal insufficiency, congenital adrenal hyperplasia, and medications (certain diuretics, NSAIDs, and ACE inhibitors).
- Primary Aldosterone deficiency
1. Primary adrenal insufficiency
2. Congenital adrenal hyperplasia (21 and 11β but not 17)
3. Aldosterone synthase deficiency
- Secondary Aldosterone deficiency
1. Secondary adrenal insufficiency
2. Diseases of the pituitary or hypothalamus
- Hyporeninemic hypoaldosteronism (due to decreased angiotensin 2 production as well as intra-adrenal dysfunction)
1. Renal dysfunction-most commonly diabetic nephropathy
2. NSAIDs
3. Ciclosporin