Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Although there is no curative treatment, several clinical trials are underway that aim to slow progression of this liver disease. Obeticholic acid is being investigated as a possible treatment for PSC due to its antifibrotic effects. Simtuzumab is a monoclonal antibody against the pro-fibrotic enzyme LOXL2 that is being developed as a possible therapy for PSC.
Extrahepatic cholestasis can usually be treated by surgery.
Pruritis in cholestatic jaundice is treated by Antihistamines, Ursodeoxycholic Acid, Phenobarbital
No pharmacologic treatment has been approved by the U.S. Food and Drug Administration for PSC. Some experts recommend a trial of ursodeoxycholic acid (UDCA), a bile acid occurring naturally in small quantities in humans, as it has been shown to lower elevated liver enzyme numbers in patients with PSC and has proven effective in other cholestatic liver diseases. However, UDCA has yet to be shown to clearly lead to improved liver histology and survival. Guidelines from the American Association for the Study of Liver Diseases and the American College of Gastroenterology do not support the use of UDCA but guidelines from the European Association for the Study of the Liver do endorse the use of moderate doses (13-15 milligrams per kilogram) of UDCA for PSC.
Supportive treatment for PSC symptoms is the cornerstone of management. These therapies are aimed at relieving symptoms such as itching with antipruritics (e.g. bile acid sequestrants such as (cholestyramine)); antibiotics to treat episodes of acute cholangitis; and vitamin supplements, as people with PSC are often deficient in fat-soluble vitamins (vitamin A, vitamin D, vitamin E, and vitamin K).
ERCP and specialized techniques may also be needed to help distinguish between a benign PSC stricture and a bile duct cancer (cholangiocarcinoma).
Liver transplantation is the only proven long-term treatment of PSC, although only a fraction of individuals with PSC will need it. Indications for transplantation include recurrent bacterial cholangitis, decompensated cirrhosis, hepatocellular carcinoma, hilar cholangiocarcinoma, and complications of portal hypertension. Not all patients are candidates for liver transplantation, and some will experience disease recurrence afterward.
Mortality is indirect and caused by complications. After cholangitis occurs, patients typically die within 5–10 years.
Caroli disease is typically found in Asia, and diagnosed in persons under the age of 22. Cases have also been found in infants and adults. As medical imaging technology improves, diagnostic age decreases.
Laparoscopic cholecystectomy has been used to treat the condition when due to dyskinesia of the gallbladder.
Symptoms may persist after cholecystectomy, and have been linked to the use of proton pump inhibitors.
Osteopathic treatment, oral magnesium supplementation with 325 mg and the use of digestive enzymes caused improvement in one case.
Treatment is dependent upon the underlying cause. Treatment is supportive as it is not possible to induce regrowth of lost ducts.
Gallstone risk increases for females (especially before menopause) and for people near or above 40 years; the condition is more prevalent among both North and South Americans and among those of European descent than among other ethnicities. A lack of melatonin could significantly contribute to gallbladder stones, as melatonin inhibits cholesterol secretion from the gallbladder, enhances the conversion of cholesterol to bile, and is an antioxidant, which is able to reduce oxidative stress to the gallbladder. Researchers believe that gallstones may be caused by a combination of factors, including inherited body chemistry, body weight, gallbladder motility (movement), and low calorie diet. The absence of such risk factors does not, however, preclude the formation of gallstones.
Nutritional factors that may increase risk of gallstones include constipation; eating fewer meals per day; low intake of the nutrients folate, magnesium, calcium, and vitamin C; low fluid consumption; and, at least for men, a high intake of carbohydrate, a high glycemic load, and high glycemic index diet. Wine and whole-grained bread may decrease the risk of gallstones.
Rapid weight loss increases risk of gallstones. Patients taking orlistat, a weight loss drug, may already be at increased risk for the formation of gallstones. Weight loss with orlistat can increase the risk of gallstones. On the contrary, ursodeoxycholic acid (UDCA), a bile acid, also a drug marketed as Ursodiol, appears to prevent formation of gallstones during weight loss. A high fat diet during weight loss also appears to prevent gallstones.
Cholecystokinin deficiency caused by celiac disease increases risk of gallstone formation, especially when diagnosis of celiac disease is delayed.
Pigment gallstones are most commonly seen in the developing world. Risk factors for pigment stones include hemolytic anemias (such as from sickle-cell disease and hereditary spherocytosis), cirrhosis, and biliary tract infections. People with erythropoietic protoporphyria (EPP) are at increased risk to develop gallstones. Additionally, prolonged use of proton pump inhibitors has been shown to decrease gallbladder function, potentially leading to gallstone formation.
Cholesterol modifying medications can affect gallstone formation. Statins inhibit cholesterol synthesis and there is evidence that their use may decrease the risk of getting gallstones. Fibrates increase cholesterol concentration in bile and their use has been associated with an increased risk of gallstones.
Simple cholecystectomy is suitable for type I patients. For types II–IV, subtotal cholecystectomy can be performed to avoid damage to the main bile ducts. Cholecystectomy and bilioenteric anastomosis may be required. Roux-en-Y hepaticojejunostomy has shown good outcome in some studies.
Treatment of hepatomegaly will vary depending on the cause of the liver enlargement and hence accurate diagnosis is the primary concern. In the case of auto-immune liver disease, prednisone and azathioprine may be used for treatment.
In the case of lymphoma the treatment options include single-agent (or multi-agent) chemotherapy and regional radiotherapy, also surgery may be an option in specific situations.Meningococcal group C conjugate vaccine are also used in some cases.
In primary biliary cirrhosis ursodeoxycholic acid helps the bloodstream remove bile which may increase survival in some affected individuals.
A 2009 study which followed 189 patients found no excess mortality despite the increased risk of pancreatic cancer.
Most (>95%) infants with biliary atresia will undergo an operation designed to retain and salvage the native liver, restore bile flow and reduce the level of jaundice. This is known as the Kasai procedure (after Morio Kasai, the Japanese surgeon who first developed the technique) or hepatoportoenterostomy. Although the procedure is not thought of as curative, it may relieve jaundice, and stop liver fibrosis allowing normal growth and development. Published series from Japan, North America and the UK show that bilirubin levels will fall to normal values in about 50-55% of infants allowing 40-50% to retain their own liver to reach the age of 5 and 10 years (and beyond). Liver transplantation is an option for those children whose liver function and symptoms fail to respond to a Kasai operation.
Recent large-scale studies by Davenport et al. ("Annals of Surgery", 2008) show that the age of the patient is not an absolute clinical factor affecting prognosis. The influence of age differs according to the disease etiology—i.e., whether biliary atresia is isolated, cystic (CBA), or accompanied by splenic malformation (BASM).
It is widely accepted that corticosteroid treatment after a Kasai operation, with or without choleretics and antibiotics, has a beneficial effect on postoperative bile flow and can clear jaundice, but the dosing and duration of the ideal steroid protocol are controversial. Furthermore, it has been observed in many retrospective longitudinal studies that corticosteroid treatment does not prolong survival of the native liver or transplant-free survival. Davenport et al. also showed ("Hepatology" 2007) that short-term, low-dose steroid therapy following a Kasai operation had no effect on the mid- or long-term prognosis of biliary atresia patients.
Biliary atresia seems to affect females slightly more often than males, and Asians and African Americans more often than Caucasians. It is common for only one child in a pair of twins or within the same family to have the condition. There seems to be no link to medications or immunizations given immediately before or during pregnancy. Diabetes during pregnancy particularly during the first trimester seems to predispose to a number of distinct congenital abnormalities in the infant such as sacral agenesis and the syndromic form of biliary atresia.
The disease is typically progressive, leading to fulminant liver failure and death in childhood, in the absence of liver transplantation. Hepatocellular carcinoma may develop in PFIC-2 at a very early age; even toddlers have been affected.
Initial treatment is supportive, with the use of agents to treat cholestasis and pruritus, including the following:
- Ursodeoxycholic acid
- Cholestyramine
- Rifampin
- Naloxone, in refractory cases
The partial external biliary diversion (PEBD) procedure is a surgical approach that diverts bile from the gallbladder externally into an ileostomy bag.
Patients should be supplemented with fat-soluble vitamins, and occasionally medium-chain triglycerides in order to improve growth.
When liver synthetic dysfunction is significant, patients should be listed for transplantation. Family members should be tested for PFIC mutations, in order to determine risk of transmission.
Choledochal cysts are treated by surgical excision of the cyst with the formation of a roux-en-Y anastomosis hepaticojujenostomy/ choledochojujenostomy to the biliary duct.
Future complications include cholangitis and a 2% risk of malignancy, which may develop in any part of the biliary tree. A recent article published in Journal of Surgery suggested that choledochal cysts could also be treated with single-incision laparoscopic hepaticojejunostomy with comparable results and less scarring. In cases of saccular type of cyst, excision and placement of T-shaped tube is done.
Currently, there is no accepted indication for fetal intervention in the management of prenatally suspected choledochal cysts.
Treatment involves an operation called a choledocholithotomy, which is the removal of the gallstone from the bile duct using ERCP, although surgeons are now increasingly using laparoscopy with cholangiography. In this procedure, tiny incisions are made in the abdomen and then in the cystic duct that connects the gallbladder to the bile duct, and a thin tube is introduced to perform a cholangiography. If stones are identified, the surgeon inserts a tube with an inflatable balloon to widen the duct and the stones are usually removed using either a balloon or tiny basket.
If laparoscopy is unsuccessful, an open choledocholithotomy is performed. This procedure may be used in the case of large stones, when the duct anatomy is complex, during or after some gallbladder operations when stones are detected, or when ERCP or laparoscopic procedures are not available.
Typically, the gallbladder is then removed, an operation called cholecystectomy, to prevent a future occurrence of common bile duct obstruction or other complications.
Common bile duct stone, also known as choledocholithiasis, is the presence of gallstones in the common bile duct (thus "" + ""). This condition causes jaundice and liver cell damage. Treatment is by cholecystectomy and ERCP.
Cholangitis requires admission to hospital. Intravenous fluids are administered, especially if the blood pressure is low, and antibiotics are commenced. Empirical treatment with broad-spectrum antibiotics is usually necessary until it is known for certain which pathogen is causing the infection, and to which antibiotics it is sensitive. Combinations of penicillins and aminoglycosides are widely used, although ciprofloxacin has been shown to be effective in most cases, and may be preferred to aminoglycosides because of fewer side effects. Metronidazole is often added to specifically treat the anaerobic pathogens, especially in those who are very ill or at risk of anaerobic infections. Antibiotics are continued for 7–10 days. Drugs that increase the blood pressure (vasopressors) may also be required to counter the low blood pressure.
Cholesterol gallstones can sometimes be dissolved with ursodeoxycholic acid taken by mouth, but it may be necessary for the person to take this medication for years. Gallstones may recur, however, once the drug is stopped. Obstruction of the common bile duct with gallstones can sometimes be relieved by endoscopic retrograde sphincterotomy (ERS) following endoscopic retrograde cholangiopancreatography (ERCP). Gallstones can be broken up using a procedure called extracorporeal shock wave lithotripsy (often simply called "lithotripsy"), which is a method of concentrating ultrasonic shock waves onto the stones to break them into tiny pieces. They are then passed safely in the feces. However, this form of treatment is suitable only when there is a small number of gallstones.
Bile duct obstruction, which is usually present in acute cholangitis, is generally due to gallstones. 10–30% of cases, however, are due to other causes such as benign stricturing (narrowing of the bile duct without an underlying tumor), postoperative damage or an altered structure of the bile ducts such as narrowing at the site of an anastomosis (surgical connection), various tumors (cancer of the bile duct, gallbladder cancer, cancer of the ampulla of Vater, pancreatic cancer, cancer of the duodenum), anaerobic organisms such as Clostridium and Bacteroides (especially in the elderly and those who have undergone previous surgery of the biliary system). Parasites which may infect the liver and bile ducts may cause cholangitis; these include the roundworm "Ascaris lumbricoides" and the liver flukes "Clonorchis sinensis", "Opisthorchis viverrini" and "Opisthorchis felineus". In people with AIDS, a large number of opportunistic organisms has been known to cause "AIDS cholangiopathy", but the risk has rapidly diminished since the introduction of effective AIDS treatment. Cholangitis may also complicate medical procedures involving the bile duct, especially ERCP. To prevent this, it is recommended that those undergoing ERCP for any indication receive prophylactic (preventative) antibiotics.
The presence of a permanent biliary stent (e.g. in pancreatic cancer) slightly increases the risk of cholangitis, but stents of this type are often needed to keep the bile duct patent under outside pressure.
Cholestasis is a condition where bile cannot flow from the liver to the duodenum. The two basic distinctions are an obstructive type of cholestasis where there is a mechanical blockage in the duct system that can occur from a gallstone or malignancy, and metabolic types of cholestasis which are disturbances in bile formation that can occur because of genetic defects or acquired as a side effect of many medications.
treatment of HP resemble that of chronic pancreatitis of other causes. Treatment focuses on enzyme and nutritional supplementation, pain management, pancreatic diabetes, and local organ complications, such as pseudocysts, bile duct or duodenal obstruction.(PMC1774562)
SSC is thought to develop as a consequence of known injuries or pathological processes of the biliary tree, such as biliary obstruction, surgical trauma to the bile duct, or ischemic injury to the biliary tree. Secondary causes of SSC include intraductal stone disease, surgical or blunt abdominal trauma, intra-arterial chemotherapy, and recurrent pancreatitis. It has been clearly demonstrated sclerosing cholangitis can develop after an episode of severe bacterial cholangitis. Also it was suggested that it can result from insult to the biliary tree by obstructive cholangitis secondary to choledocholithiasis, surgical damage, trauma, vascular insults, parasites, or congenital fibrocystic disorders. Additional causes of secondary SC are toxic, due to chemical agents or drugs.
Ductopenia refers to a reduction in the number of ducts in an organ. It is the histological hallmark of vanishing bile duct syndrome (typically <0.5 bile ducts per portal triad). The most common cause of ductopenia is primary biliary cholangitis.
Other causes of ductopenia include failing liver transplant, Hodgkin's lymphoma, graft-versus-host disease (GVHD), sarcoid, Cytomegalovirus infection, HIV and medication toxicity.