Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In season 2 of the USA Network series Royal Pains, Reshma Shetty (as Divya Katdare) diagnoses a storm chaser (Jamie Ray Newman) with recurring fractures to have tumor-induced osteomalacia.
Oral phosphate, 9, calcitriol, 9; in the event of severe bowing, an osteotomy may be performed to correct the leg shape.
Resection of the tumor is the ideal treatment and results in correction of hypophosphatemia (and low calcitriol levels) within hours of resection. Resolution of skeletal abnormalities may take many months.
If the tumor cannot be located, treatment with calcitriol (1-3 µg/day) and phosphorus (1-4 g/day in divided doses) is instituted. Tumors which secrete somatostatin receptors may respond to treatment with octreotide. If hypophosphatemia persists despite calcitriol and phosphate supplementation, administration of cinacalcet has been shown to be useful
Treatment for renal osteodystrophy includes the following:
- calcium and/or native vitamin D supplementation
- restriction of dietary phosphate (especially inorganic phosphate contained in additives)
- phosphate binders such as calcium carbonate, calcium acetate, sevelamer hydrochloride or carbonate, lanthanum carbonate, sucroferric oxyhydroxide, ferric citrate among others
- active forms of vitamin D (calcitriol, alfacalcidol, paricalcitol, maxacalcitol, doxercalciferol, among others)
- cinacalcet
- renal transplantation
- haemodialysis five times a week is thought to be of benefit
- parathyroidectomy for symptomatic medication refractive end stage disease
Recovery from renal osteodystrophy has been observed following kidney transplantation. Renal osteodystrophy is a chronic condition with a conventional hemodialysis schedule. Nevertheless, it is important to consider that the broader concept of CKD-MBD, which includes renal osteodystrophy, is not only associated with bone disease and increased risk of fractures but also with cardiovascular calcification, poor quality of life and increased morbidity and mortality in CKD patients (the so-called bone-vascular axis). Actually, bone may now be considered a new endocrine organ at the heart of CKD-MBD.
Prevention of osteomalacia rests on having an adequate intake of vitamin D and calcium. Vitamin D3 Supplementation is often needed due to the scarcity of Vitamin D sources in the modern diet.
Autosomal dominant hypophosphatemic rickets (ADHR) is a rare hereditary disease in which excessive loss of phosphate in the urine leads to poorly formed bones (rickets), bone pain, and tooth abscesses. ADHR is caused by a mutation in the fibroblast growth factor 23 (FGF23). ADHR affects men and women equally; symptoms may become apparent at any point from childhood through early adulthood. Blood tests reveal low levels of phosphate (hypophosphatemia) and inappropriately normal levels of vitamin D. Occasionally, hypophosphatemia may improve over time as urine losses of phosphate partially correct.
ADHR may be lumped in with X-linked hypophosphatemia under general terms such as "hypophosphatemic rickets". Hypophospatemic rickets are associated with at least nine other genetic mutations. Clinical management of hypophospatemic rickets may differ depending on the specific mutations associated with an individual case, but treatments are aimed at raising phosphate levels to promote normal bone formation.
There is no known treatment at present, although some investigators have tried to lessen the hypercalcemia with various forms of bisphosphonates.
Sufficient vitamin D levels can also be achieved through dietary supplementation and/or exposure to sunlight. Vitamin D (cholecalciferol) is the preferred form since it is more readily absorbed than vitamin D. Most dermatologists recommend vitamin D supplementation as an alternative to unprotected ultraviolet exposure due to the increased risk of skin cancer associated with sun exposure. Endogenous production with full body exposure to sunlight is approximately 250 µg (10,000 IU) per day.
According to the American Academy of Pediatrics (AAP), all infants, including those who are exclusively breast-fed, may need vitamin D supplementation until they start drinking at least of vitamin D-fortified milk or formula a day.
As of October 2015, asfotase alfa (Strensiq) has been approved by the FDA for the treatment of hypophosphatasia. Current management consists of palliating symptoms, maintaining calcium balance and applying physical, occupational, dental and orthopedic interventions, as necessary.
- Hypercalcemia in infants may require restriction of dietary calcium or administration of calciuretics. This should be done carefully so as not to increase the skeletal demineralization that results from the disease itself. Vitamin D sterols and mineral supplements, traditionally used for rickets or osteomalacia, should not be used unless there is a deficiency, as blood levels of calcium ions (Ca2+), inorganic phosphate (Pi) and vitamin D metabolites usually are not reduced.
- Craniosynostosis, the premature closure of skull sutures, may cause intracranial hypertension and may require neurosurgical intervention to avoid brain damage in infants.
- Bony deformities and fractures are complicated by the lack of mineralization and impaired skeletal growth in these patients. Fractures and corrective osteotomies (bone cutting) can heal, but healing may be delayed and require prolonged casting or stabilization with orthopedic hardware. A load-sharing intramedullary nail or rod is the best surgical treatment for complete fractures, symptomatic pseudofractures, and progressive asymptomatic pseudofractures in adult hypophosphatasia patients.
- Dental problems: Children particularly benefit from skilled dental care, as early tooth loss can cause malnutrition and inhibit speech development. Dentures may ultimately be needed. Dentists should carefully monitor patients’ dental hygiene and use prophylactic programs to avoid deteriorating health and periodontal disease.
- Physical Impairments and pain: Rickets and bone weakness associated with hypophosphatasia can restrict or eliminate ambulation, impair functional endurance, and diminish ability to perform activities of daily living. Nonsteroidal anti-inflammatory drugs may improve pain-associated physical impairment and can help improve walking distance]
- Bisphosphonate (a pyrophosphate synthetic analog) in one infant had no discernible effect on the skeleton, and the infant’s disease progressed until death at 14 months of age.
- Bone marrow cell transplantation in two severely affected infants produced radiographic and clinical improvement, although the mechanism of efficacy is not fully understood and significant morbidity persisted.
- Enzyme replacement therapy with normal, or ALP-rich serum from patients with Paget’s bone disease, was not beneficial.
- Phase 2 clinical trials of bone targeted enzyme-replacement therapy for the treatment of hypophosphatasia in infants and juveniles have been completed, and a phase 2 study in adults is ongoing.
Nutritional osteomalacia responds well to administration of 2,000-10,000 IU of vitamin D3 by mouth daily. Vitamin D3 (cholecalciferol) is typically absorbed more readily than vitmin D2 (ergocalciferol). Osteomalacia due to malabsorption may require treatment by injection or daily oral dosing of significant amounts of vitamin D3.
Treatment involves increasing dietary intake of calcium, phosphates and vitamin D. Exposure to ultraviolet B light (most easily obtained when the sun is highest in the sky), cod liver oil, halibut-liver oil, and viosterol are all sources of vitamin D.
A sufficient amount of ultraviolet B light in sunlight each day and adequate supplies of calcium and phosphorus in the diet can prevent rickets. Darker-skinned people need to be exposed longer to the ultraviolet rays. The replacement of vitamin D has been proven to correct rickets using these methods of ultraviolet light therapy and medicine.
Recommendations are for 400 international units (IU) of vitamin D a day for infants and children. Children who do not get adequate amounts of vitamin D are at increased risk of rickets. Vitamin D is essential for allowing the body to uptake calcium for use in proper bone calcification and maintenance.
X-linked hypophosphatemia (XLH), also called X-linked dominant hypophosphatemic rickets, X-linked vitamin d-resistant rickets, is an X-linked dominant form of rickets (or osteomalacia) that differs from most cases of rickets in that ingestion of vitamin D is relatively ineffective. It can cause bone deformity including short stature and genu varum (bow leggedness). It is associated with a mutation in the PHEX gene sequence (Xp.22) and subsequent inactivity of the PHEX protein. The prevalence of the disease is 1:20000. The leg deformity can be treated with Ilizarov frames and CAOS surgery.
If the underlying cause of the hypocalcemia can be addressed, the hyperparathyroidism will resolve. In people with chronic renal failure, treatment consists of dietary restriction of phosphorus, supplements with an active form of vitamin D such as calcitriol, doxercalciferol, paricalcitol, etc. and phosphate binders which can be divided into calcium-based and non-calcium based.
Extended Release Calcifediol was recently approved by the FDA as a treatment for secondary hyperparathyroidism (SHPT) in adults with stage 3 or 4 chronic �kidney disease (CKD) and low vitamin D blood levels (25-hydroxyvitamin D less than 30 ng/mL). It can help treat SHPT by increasing Vitamin D levels and lowering parathyroid hormone or PTH. It is �not for patients with stage 5 CKD or on dialysis.
In the treatment of secondary hyperparathyroidism due to chronic kidney disease on dialysis calcimimetics do not appear to affect the risk of early death. It does decrease the need for a parathyroidectomy but caused more issues with low blood calcium levels and vomiting.
Most people with hyperparathyroidism secondary to chronic kidney disease will improve after renal transplantation, but many will continue to have a degree of residual hyperparathyroidism (tertiary hyperparathyroidism) post-transplant with associated risk of bone loss, etc.
Medical management of OFC consists of Vitamin D treatment, generally alfacalcidol or calcitriol, delivered intravenously. Studies have shown that in cases of OFC caused by either end-stage renal disease or primary hyperparathyoidism, this method is successful not only in treating underlying hyperparathyoidism, but also in causing the regression of brown tumors and other symptoms of OFC.
Acroosteolysis is resorption of the distal bony phalanges. Acroosteolysis has two patterns of resorption in adults: diffuse and bandlike.
The diffuse pattern of resorption has a widely diverse differential diagnosis which includes: pyknodysostosis, collagen vascular disease and vasculitis, Raynaud's neuropathy, trauma, epidermolysis bullosa, psoriasis, frostbite, sarcoidosis, hypertrophic osteoarthropathy, acromegaly, and advanced leprosy.
The bandlike pattern of resorption may be seen with polyvinyl chloride exposure and Hadju-Cheney syndrome.
A mnemonic commonly used for acro-osteolysis is PINCHFO.
Pyknodysostosis, Psoriasis,
Injury (thermal burn, frostbite),
Neuropathy (diabetes),
Collagen vascular disease (scleroderma, Raynaud's),
Hyperparathyroidism,
Familial (Hadju-Cheney, progeria),
Occupational (polyvinyl exposure),
Acroosteolysis may be associated with minimal skin changes or with ischemic skin lesions that may result in digital necrosis.
Standard intravenous preparations of potassium phosphate are available and are routinely used in malnourished patients and alcoholics. Oral supplementation is also useful where no intravenous treatment are available. Historically one of the first demonstrations of this was in concentration camp victims who died soon after being re-fed: it was observed that those given milk (high in phosphate) had a higher survival rate than those who did not get milk.
Monitoring parameters during correction with IV phosphate
- Phosphorus levels should be monitored after 2 to 4 hours after each dose, also monitor serum potassium, calcium and magnesium. Cardiac monitoring is also advised.
Treatment in fibrous dysplasia is mainly palliative, and is focused on managing fractures and preventing deformity. There are no medications capable of altering the disease course. Intravenous bisphosphonates may be helpful for treatment of bone pain, but there is no clear evidence that they strengthen bone lesions or prevent fractures. Surgical techniques that are effective in other disorders, such as bone grafting, curettage, and plates and screws, are frequently ineffective in fibrous dysplasia and should be avoided. Intramedullary rods are generally preferred for management of fractures and deformity in the lower extremities. Progressive scoliosis can generally be managed with standard instrumentation and fusion techniques. Surgical management in the craniofacial skeleton is complicated by frequent post-operative FD regrowth, and should focus on correction of functional deformities. Prophylactic optic nerve decompression increases the risk of vision loss and is contraindicated.
Managing endocrinopathies is a critical component of management in FD. All patients with fibrous dysplasia should be evaluated and treated for endocrine diseases associated with McCune–Albright syndrome. In particular untreated growth hormone excess may worsen craniofacial fibrous dysplasia and increase the risk of blindness. Untreated hypophosphatemia increases bone pain and risk of fractures.
No treatment is generally required, as bone demineralisation and kidney stones are relatively uncommon in the condition.
A common cause of chondrocalcinosis is calcium pyrophosphate dihydrate crystal deposition disease (CPPD).
Excessive calcium (due to hypomagnesemia) has a potential relationship with chondrocalcinosis, and magnesium supplementation may reduce or alleviate symptoms. In some cases, arthritis from injury can cause chondrocalcinosis.
Other causes of chondrocalcinosis include:
- Hypercalcaemia, especially when caused by hyperparathyroidism
- Arthritis
- Gout
- Wilson disease
- Hemochromatosis
- Ochronosis
- Hypothyroidism
- Hyperoxalemia
- Acromegaly
- osteoarthritis
Bone disease is common among the elderly individual, but adolescents can be diagnosed with this disorder as well. There are many bone disorders such as osteoporosis, Paget's disease, hypothyroidism. Although there are many forms of bone disorders, they all have one thing in common; abnormalities of specific organs involved, deficiency in vitamin D or low Calcium in diet, which results in poor bone mineralization.
In especially severe cases of OFC, parathyroidectomy, or the full removal of the parathyroid glands, is the chosen route of treatment. Parathyroidectomy has been shown to result in the reversal of bone resorption and the complete regression of brown tumors. In situations where parathyroid carcinoma is present, surgery to remove the tumors has also led to the regression of hyperparathyroidism as well as the symptoms of OFC.
Bone transplants have proven successful in filling the lesions caused by OFC. A report showed that in 8 out of 11 instances where cavities caused by OFC were filled with transplanted bone, the lesion healed and the transplanted bone blended rapidly and seamlessly with the original bone.
Jansen's metaphyseal chondrodysplasia (JMC) is a disease that results from ligand-independent activation of the type 1 of the parathyroid hormone receptor (PTHR1), due to one of three reported mutations (activating mutation).
JMC is extremely rare, and as of 2007 there are fewer than 20 reported cases worldwide.
Treatment for secondary juvenile osteoporosis focuses on treating any underlying disorder.
An endocrine bone disease is a bone disease associated with a disorder of the endocrine system. An example is osteitis fibrosa cystica.