Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most children born with congenital hypothyroidism and correctly treated with thyroxine grow and develop normally in all respects. Even most of those with athyreosis and undetectable T levels at birth develop with normal intelligence, although as a population academic performance tends to be below that of siblings and mild learning problems occur in some.
Congenital hypothyroidism is the most common preventable cause of intellectual disability. Few treatments in the practice of medicine provide as large a benefit for as small an effort.
The developmental quotient (DQ, as per Gesell Developmental Schedules) of children with hypothyroidism at age 24 months that have received treatment within the first 3 weeks of birth is summarised below:
Desiccated thyroid extract is an animal-based thyroid gland extract, most commonly from pigs. It is a combination therapy, containing forms of T and T. It also contains calcitonin (a hormone produced in the thyroid gland involved in the regulation of calcium levels), T and T; these are not present in synthetic hormone medication. This extract was once a mainstream hypothyroidism treatment, but its use today is unsupported by evidence; British Thyroid Association and American professional guidelines discourage its use.
There is little evidence whether there is a benefit from treating subclinical hypothyroidism, and whether this offsets the risks of overtreatment. Untreated subclinical hypothyroidism may be associated with a modest increase in the risk of coronary artery disease. A 2007 review found no benefit of thyroid hormone replacement except for "some parameters of lipid profiles and left ventricular function". There is no association between subclinical hypothyroidism and an increased risk of bone fractures, nor is there a link with cognitive decline.
Since 2008, consensus American and British opinion has been that in general people with TSH under 10 mIU/l do not require treatment. American guidelines recommend that treatment should be considered if the TSH is elevated but below 10 mIU/l in people with symptoms of hypothyroidism, detectable antibodies against thyroid peroxidase, a history of heart disease or are at an increased risk for heart disease.
The goal of newborn screening programs is to detect and start treatment within the first 1–2 weeks of life. Treatment consists of a daily dose of thyroxine, available as a small tablet. The generic name is levothyroxine, and several brands are available. The tablet is crushed and given to the baby with a small amount of water or milk. The most commonly recommended dose range is 10-15 μg/kg daily, typically 12.5 to 37.5 or 44 μg.
Within a few weeks, the T and TSH levels are rechecked to confirm that they are being normalized by treatment. As the child grows up, these levels are checked regularly to maintain the right dose. The dose increases as the child grows.
People with autoimmune hyperthyroidism should not eat foods high in iodine, such as edible seaweed and kelps.
From a public health perspective, the general introduction of iodized salt in the United States in 1924 resulted in lower disease, goiters, as well as improving the lives of children whose mothers would not have eaten enough iodine during pregnancy which would have lowered the IQs of their children.
Toxic multinodular goiter can be treated with antithyroid medications such as propylthiouracil or methimazole, radioactive iodine, or with surgery.
Another treatment option is injection of ethanol into the nodules.
Radioiodine therapy with iodine-131 can be used to shrink the thyroid gland (for instance, in the case of large goiters that cause symptoms but do not harbor cancer—after evaluation and biopsy of suspicious nodules has been done), or to destroy hyperactive thyroid cells (for example, in cases of thyroid cancer). The iodine uptake can be high in countries with iodine deficiency, but low in iodine sufficient countries. To enhance iodine-131 uptake by the thyroid and allow for more successful treatment, TSH is raised prior to therapy in order to stimulate the existing thyroid cells. This is done either by withdrawal of thyroid hormone medication or injections of recombinant human TSH (Thyrogen), released in the United States in 1999. Thyrogen injections can reportedly boost uptake up to 50-60%. Radioiodine treatment can also cause hypothyroidism (which is sometimes the end goal of treatment) and, although rare, a pain syndrome (due to radiation thyroiditis).
Hyperthyroidism is one of the most common endocrine conditions affecting older domesticated housecats. Some veterinarians estimate that it occurs in up to 2% of cats over the age of 10. The disease has become significantly more common since the first reports of feline hyperthyroidism in the 1970s. One cause of hyperthyroidism in cats is the presence of benign tumors, but the reason these cats develop such tumors continues to be studied. However, recent research published in Environmental Science & Technology, a publication of the American Chemical Society, suggests that many cases of feline hyperthyroidism are associated with exposure to environmental contaminants called polybrominated diphenyl ethers (PBDEs), which are present in flame retardants in many household products, in particular, furniture and some electronics.
The study on which the report was based was conducted jointly by researchers at the EPA's National Health and Environmental Effects Laboratory and Indiana University. In the study, which involved 23 pet cats with feline hyperthyroidism, PBDE blood levels were three times as high as those in younger, non-hyperthyroid cats. In ideal circumstances, PBDE and related endocrine disruptors that seriously damage health would not be present in the blood of any animals, including humans.
Several studies indicate canned fish, liver and giblet prepared cat food may increase risk whereas fertilizers, herbicides, or plant pesticides had no effect. Another study suggests cat litter could be a problem.
Mutations of the thyroid-stimulating hormone receptor that cause a constitutive activation of the thyroid gland cells have been discovered recently. Many other factors may play a role in the pathogenesis of the disease such as goitrogens (isoflavones such as genistein, daidzein, and quercetin) as well as the iodine and selenium content of the cat's diet.
The most common presenting symptoms are: rapid weight loss, tachycardia (rapid heart rate), vomiting, diarrhea, increased consumption of fluids (polydipsia) and food, and increased urine production (polyuria). Other symptoms include hyperactivity, possible aggression, heart murmurs, a gallop rhythm, an unkempt appearance, and large, thick claws. About 70% of afflicted cats also have enlarged thyroid glands (goiter).
The same three treatments used with humans are also options in treating feline hyperthyroidism (surgery, radioiodine treatment, and anti-thyroid drugs). The drug that is used to help reduce the hyperthyroidism is methimazole. Where drug therapy is used it must be given to cats for the remainder of their lives but this may be the least expensive option, especially for very old cats. Anti-thyroid drugs for cats are available in both pill form and in a topical gel, that is applied using a finger cot to the hairless skin inside a cat's ear. Many cat owners find this gel a good option for cats that don't like being given pills. Radioiodine treatment and surgery often cure hyperthyroidism but some veterinarians prefer radioiodine treatment over surgery because it doesn't carry the risks associated with anesthesia.
Radioiodine treatment, however, is not available in all areas for cats as this treatment requires nuclear radiological expertise and facilities as the cat's urine, sweat, saliva, and stool are radioactive for several days after the treatment requiring special inpatient handling and facilities usually for a total of 3 weeks (first week in total isolation and the next two weeks in close confinement). In the United States, the guidelines for radiation levels vary from state to state; some states such as Massachusetts allow hospitalization for as little as two days before the animal is sent home with care instructions. Surgery tends to be done only when just one of the thyroid glands is affected (unilateral disease); however, following surgery, the remaining gland may become overactive. As in people, one of the most common complications of the surgery is hypothyroidism.
Levothyroxine is a stereoisomer of thyroxine (T4) which is degraded much more slowly and can be administered once daily in patients with hypothyroidism. Natural thyroid hormone from pigs is sometimes also used, especially for people who cannot tolerate the synthetic version. Hyperthyroidism caused by Graves' disease may be treated with the thioamide drugs propylthiouracil, carbimazole or methimazole, or rarely with Lugol's solution. Additionally, hyperthyroidism and thyroid tumors may be treated with radioactive iodine. Ethanol injections for the treatment of recurrent thyroid cysts and metastatic thyroid cancer in lymph nodes can also be an alternative to surgery.
Goitre is treated according to the cause. If the thyroid gland is producing too much T3 and T4, radioactive iodine is given to the patient to shrink the gland. If goitre is caused by iodine deficiency, small doses of iodide in the form of Lugol's Iodine or KI solution are given. If the goitre is associated with an underactive thyroid, thyroid supplements are used as treatment. In extreme cases, a partial or complete thyroidectomy is required.
Goitre is more common among women, but this includes the many types of goitre caused by autoimmune problems, and not only those caused by simple lack of iodine.
Levofloxacin does pass through breast milk. It is not likely to cause problems for the baby. In some cases, an underactive thyroid may inhibit the production of breast milk.
The main antithyroid drugs are carbimazole (in the UK), methimazole (in the US), and propylthiouracil/PTU. These drugs block the binding of iodine and coupling of iodotyrosines. The most dangerous side effect is agranulocytosis (1/250, more in PTU). Others include granulocytopenia (dose-dependent, which improves on cessation of the drug) and aplastic anemia. Patients on these medications should see a doctor if they develop sore throat or fever. The most common side effects are rash and peripheral neuritis. These drugs also cross the placenta and are secreted in breast milk. Lugol's iodine may be used to block hormone synthesis before surgery.
A randomized control trial testing single-dose treatment for Graves' found methimazole achieved euthyroid state more effectively after 12 weeks than did propylthyouracil (77.1% on methimazole 15 mg vs 19.4% in the propylthiouracil 150 mg groups).
No difference in outcome was shown for adding thyroxine to antithyroid medication and continuing thyroxine versus placebo after antithyroid medication withdrawal. However, two markers were found that can help predict the risk of recurrence. These two markers are a positive TSHr antibody (TSHR-Ab) and smoking. A positive TSHR-Ab at the end of antithyroid drug treatment increases the risk of recurrence to 90% (sensitivity 39%, specificity 98%), a negative TSHR-Ab at the end of antithyroid drug treatment is associated with a 78% chance of remaining in remission. Smoking was shown to have an impact independent to a positive TSHR-Ab.
The usage of terminology for types of goiter has varied over the past century. Physicians and surgeons tend to differentiate among solitary-nodule goiter, multinodular goiter, and non-nodular goiter more thoroughly in recent decades than they formerly did. Thus some sources have described, or still describe, thyroid adenoma (toxic adenoma) as synonymous with toxic multinodular goiter, but other sources differentiate those two as single-nodule disease versus multinodular disease (respectively) with pathogenesis that is likely differing in most cases (eg, single neoplastic cell clone versus multifocal or diffuse molecular metabolic change). The medical eponyms "Plummer disease" (named after American physician Henry Stanley Plummer) and "Parry disease" (named after English physician Caleb Hillier Parry) have been used to refer to toxic multinodular goiter, toxic adenoma, and toxic diffuse goiter (Graves' disease); the specific entity in each patient/case is not always clear retrospectively, especially in older literature. This is logical given that advanced medical imaging that can show what is happening at various places within a thyroid gland inside a living person (such as nuclear medicine imaging of radioiodine tracer uptake) was not available until after the 1940s.
Thyroid dysgenesis or thyroid agenesis is a cause of congenital hypothyroidism where the thyroid is missing, ectopic, or severely underdeveloped.
It should not be confused with iodine deficiency, or with other forms of congenital hypothyroidism, such as thyroid dyshormonogenesis, where the thyroid is present but not functioning correctly.
Congenital hypothyroidism caused by thyroid dysgenesis can be associated with PAX8.
Treatment of Graves' disease includes antithyroid drugs which reduce the production of thyroid hormone; radioiodine (radioactive iodine I-131); and thyroidectomy (surgical excision of the gland). As operating on a frankly hyperthyroid patient is dangerous, prior to thyroidectomy, preoperative treatment with antithyroid drugs is given to render the patient "euthyroid" ("i.e." normothyroid). Each of these treatments has advantages and disadvantages. No one treatment approach is considered the best for everyone.
Treatment with antithyroid medications must be given for six months to two years to be effective. Even then, upon cessation of the drugs, the hyperthyroid state may recur. The risk of recurrence is about 40–50%, and lifelong treatment with antithyroid drugs carries some side effects such as agranulocytosis and liver disease. Side effects of the antithyroid medications include a potentially fatal reduction in the level of white blood cells. Therapy with radioiodine is the most common treatment in the United States, while antithyroid drugs and/or thyroidectomy are used more often in Europe, Japan, and most of the rest of the world.
β-Blockers (such as propranolol) may be used to inhibit the sympathetic nervous system symptoms of tachycardia and nausea until such time as antithyroid treatments start to take effect. Pure β-blockers do not inhibit lid-retraction in the eyes, which is mediated by alpha adrenergic receptors.
During pregnancy, women may want to see both an OB/GYN and an endocrinologist, a doctor who treats people with hormone problems. Levothyroxine is safe to use during pregnancy and necessary for the health of the baby. Women with Hashimoto's disease or an underactive thyroid who are taking levothyroxine before pregnancy may need a higher dose to maintain normal thyroid function. Clinicians may check thyroid function every 6 to 8 weeks during pregnancy. After delivery, hormone levels usually go back to the pre-pregnancy level.
Pregnant women who are positive for Hashimoto's thyroiditis may have decreased thyroid function or the gland may fail entirely. If a woman is TPOAb-positive, clinicians can inform her of the risks for themselves and their infants if they go untreated. "Thyroid peroxidase antibodies (TPOAb) are detected in 10% of pregnant women," which presents risks to those pregnancies. Women who have low thyroid function that has not been stabilized are at greater risk of having an infant with: low birth weight, neonatal respiratory distress, hydrocephalus, hypospadias, miscarriage, and preterm delivery. The embryo transplantion rate and successful pregnancy outcomes are improved when Hashimoto's is treated. Recommendations are to only treat pregnant women who are TPOAb-positive throughout the entirety of their pregnancies and to screen all pregnant women for thyroid levels. Close cooperation between the endocrinologist and obstetrician benefits the woman and the infant. The Endocrine Society recommends screening in pregnant women who are considered high-risk for thyroid autoimmune disease.
Thyroid peroxides antibodies testing is recommended for women who have ever been pregnant regardless of pregnancy outcome. "...[P]revious pregnancy plays a major role in development of autoimmune overt hypothyroidism in premenopausal women, and the number of previous pregnancies should be taken into account when evaluating the risk of hypothyroidism in a young women ["sic"]."
An "ectopic thyroid", also called "accessory thyroid gland", is a form of thyroid dysgenesis in which an entire or parts of the thyroid located in another part of the body than what is the usual case. A completely ectopic thyroid gland may be located anywhere along the path of the descent of the thyroid during its embryological development, although it is most commonly located at the base of the tongue, just posterior to the foramen cecum of the tongue. In this location, an aberrant or ectopic thyroid gland is known as a "lingual thyroid". If the thyroid fails to descend to even higher degree, then the resulting final resting point of the thyroid gland may be high in the neck, such as just below the hyoid bone. Parts of ectopic thyroid tissue ("accessory thyroid tissue") can also occur, and arises from remnants of the thyroglossal duct, and may appear anywhere along its original length. Accessory thyroid tissue may be functional, but is generally insufficient for normal function if the main thyroid gland is entirely removed.
Lingual thyroid is 4-7 times more common in females, with symptoms developing during puberty, pregnancy or menopause. Lingual thyroid may be asymptomatic, or give symptoms such as dysphagia (difficulty swallowing), dysphonia (difficulty talking) and dyspnea (difficulty breathing).
Ideally a woman who is known to have hyperthyroidism should seek pre-pregnancy advice, although as yet there is no evidence for its benefit. Appropriate education should allay fears that are commonly present in these women. She should be referred for specialist care for frequent checking of her thyroid status, thyroid antibody evaluation and close monitoring of her medication needs. Medical therapy with anti-thyroid medications is the treatment of choice for hyperthyroidism in pregnancy.Methimazole and propylthiouracil (PTU) are effective in preventing pregnancy complications by hyperthyroidism. Surgery is considered for patients who suffer severe adverse reactions to anti-thyroid drugs and this is best performed in the second trimester of pregnancy. Radioactive iodine is absolutely contraindicated in pregnancy and the puerperium. If a woman is already receiving carbimazole, a change to propylthiouracil (PTU) is recommended but this should be changed back to carbimazole after the first trimester. This is because carbimazole can rarely be associated with skin and also mid line defects in the fetus but PTU long term also can cause liver side effects in the adult. Carbimazole and PTU are both secreted in breast milk but evidence suggests that antithyroid drugs are safe during lactation. There are no adverse effects on IQ or psychomotor development in children whose mothers have received antithyroid drugs in pregnancy.
Current guidelines suggest that a pregnant patient should be on PTU during the first trimester of pregnancy due to lower tetragenic effect and then be switched to methimazole during the second and third trimester due to lower liver dysfunction side effects.
Levothyroxine is a stereoisomer of thyroxine which is degraded much slower and can be administered once daily in patients with hypothyroidism.
One particular familial form is associated with sensorineural deafness (Pendred's syndrome).
OMIM includes the following:
Hypothyroidism caused by Hashimoto's thyroiditis is treated with thyroid hormone replacement agents such as levothyroxine, triiodothyronine or desiccated thyroid extract. A tablet taken once a day generally keeps the thyroid hormone levels normal. In most cases, the treatment needs to be taken for the rest of the person's life. In the event that hypothyroidism is caused by Hashimoto's thyroiditis, it may be recommended that the TSH levels be kept under 3.0 mIU/L.
Medications to treat hypothyroidism have been found to be safe during pregnancy. Levothyroxine is the treatment of choice for hypothyroidism in pregnancy. Thyroid function should be normalised prior to conception in women with pre-existing thyroid disease. Once pregnancy is confirmed the thyroxine dose should be increased by about 30-50% and subsequent titrations should be guided by thyroid function tests (FT4 and TSH) that should be monitored 4-6 weekly until euthyroidism is achieved. It is recommended that TSH levels are maintained below 2.5 mU/l in the first trimester of pregnancy and below 3 mU/l in later pregnancy. The recommended maintenance dose of thyroxine in pregnancy is about 2.0-2.4 µg/kg daily. Thyroxine requirements may increase in late gestation and return to pre-pregnancy levels in the majority of women on delivery. Pregnant patients with subclinical hypothyroidism (normal FT4 and elevated TSH) should be treated as well, since supplementation with levothyroxine in such cases results in significantly higher delivery rate, with a pooled relative chance of 2.76.
Primary treatment is prompted by the administration of adequate doses of either the thyroid hormone l-throxine given intravenously or by giving L-triiodothyronine via a nasogastric tube. It is essential to identify and treat the condition precipitating the coma.
Myxedema coma is rare but often fatal. It occurs most often in elderly women and may be mistaken for one of the chronic debilitating diseases common to this age group.
Though the exact cause of myxedema is still unclear, a wealth of skillful research has demonstrated the importance of iodine. In an important study the researchers showed that in the myxedematous type of cretinism treatment with iodine normalizes thyroid function provided that the treatment is begun early in the postnatal period. If not, the prognosis remains dismal.