Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment for renal osteodystrophy includes the following:
- calcium and/or native vitamin D supplementation
- restriction of dietary phosphate (especially inorganic phosphate contained in additives)
- phosphate binders such as calcium carbonate, calcium acetate, sevelamer hydrochloride or carbonate, lanthanum carbonate, sucroferric oxyhydroxide, ferric citrate among others
- active forms of vitamin D (calcitriol, alfacalcidol, paricalcitol, maxacalcitol, doxercalciferol, among others)
- cinacalcet
- renal transplantation
- haemodialysis five times a week is thought to be of benefit
- parathyroidectomy for symptomatic medication refractive end stage disease
Recovery from renal osteodystrophy has been observed following kidney transplantation. Renal osteodystrophy is a chronic condition with a conventional hemodialysis schedule. Nevertheless, it is important to consider that the broader concept of CKD-MBD, which includes renal osteodystrophy, is not only associated with bone disease and increased risk of fractures but also with cardiovascular calcification, poor quality of life and increased morbidity and mortality in CKD patients (the so-called bone-vascular axis). Actually, bone may now be considered a new endocrine organ at the heart of CKD-MBD.
Chronic kidney disease–mineral and bone disorder (CKD-MBD) is one of the many complications associated with chronic kidney disease. It represents a systemic disorder of mineral and bone metabolism due to CKD manifested by either one or a combination of the following:
- Abnormalities of calcium, phosphorus (phosphate), parathyroid hormone, or vitamin D metabolism
- Abnormalities in bone turnover, mineralization, volume, linear growth, or strength
- Vascular or other soft-tissue calcification
CKD-MBD explains, at least in part, the high morbidity and mortality of CKD patients, linking kidney and bone disease with cardiovascular complications. It is a matter of discussion whether CKD-MBD may be considered a real syndrome or not.
CKD-MBD broadens the "old" concept of "renal osteodystrophy", which now should be restricted to describing the "bone pathology" associated with CKD. Thus, renal osteodystrophy is currently considered "one" measure of the skeletal component of the systemic disorder of CKD–MBD that is quantifiable by histomorphometry of bone biopsy.
It is well-known that as kidney function declines, there is a progressive deterioration in mineral homeostasis, with a disruption of normal serum and tissue concentrations of phosphorus and calcium, and changes in circulating levels of hormones. These include parathyroid hormone (PTH), 25-hydroxyvitamin D (25(OH) vitamin D; calcidiol), 1,25-dihydroxyvitamin D (1,25(OH)2 vitamin D; calcitriol), and other vitamin D metabolites, fibroblast growth factor 23 (FGF-23), and growth hormone. Beginning in CKD stage 3, the ability of the kidneys to appropriately excrete a phosphate load is diminished, leading to hyperphosphatemia, elevated PTH (secondary hyperparathyroidism), and decreased 1,25(OH)2 vitamin D with associated elevations in the levels of FGF-23. The conversion of 25(OH) vitamin D to 1,25(OH)2 vitamin D is impaired, reducing intestinal calcium absorption and increasing PTH. The kidney fails to respond adequately to PTH, which normally promotes phosphaturia and calcium reabsorption, or to FGF-23, which also enhances phosphate excretion. In addition, there is evidence at the tissue level of a downregulation of vitamin D receptor and of resistance to the actions of PTH. Therapy is generally focused on correcting biochemical and hormonal abnormalities in an effort to limit their consequences.
The mineral and endocrine functions disrupted in CKD are critically important in the regulation of both initial bone formation during growth (bone modeling) and bone structure and function during adulthood (bone remodeling). As a result, bone abnormalities are found almost universally in patients with CKD requiring dialysis (stage 5D), and in the majority of patients with CKD stages 3–5. More recently, there has been an increasing concern of extraskeletal calcification that may result from the deranged mineral and bone metabolism of CKD and from the therapies used to correct these abnormalities.
Numerous cohort studies have shown associations between disorders of mineral metabolism and fractures, cardiovascular disease, and mortality. These observational studies have broadened the focus of CKD-related mineral and bone disorders (MBDs) to include cardiovascular disease (which is the leading cause of death in patients at all stages of CKD). All three of these processes (abnormal mineral metabolism, abnormal bone, and extraskeletal calcification) are closely interrelated and together make a major contribution to the morbidity and mortality of patients with CKD. The traditional definition of renal osteodystrophy did not accurately encompass this more diverse clinical spectrum, based on serum biomarkers, noninvasive imaging, and bone abnormalities. The absence of a generally accepted definition and diagnosis of renal osteodystrophy prompted Kidney Disease: Improving Global Outcomes (KDIGO)] to sponsor a controversies conference, entitled "Definition, Evaluation, and Classification of Renal Osteodystrophy", in 2005. The principal conclusion was that the term "CKD–Mineral and Bone Disorder (CKD–MBD)" should now be used to describe the "broader clinical syndrome encompassing mineral, bone, and calcific cardiovascular abnormalities that develop as a complication of CKD".
If the underlying cause of the hypocalcemia can be addressed, the hyperparathyroidism will resolve. In people with chronic renal failure, treatment consists of dietary restriction of phosphorus, supplements with an active form of vitamin D such as calcitriol, doxercalciferol, paricalcitol, etc. and phosphate binders which can be divided into calcium-based and non-calcium based.
Extended Release Calcifediol was recently approved by the FDA as a treatment for secondary hyperparathyroidism (SHPT) in adults with stage 3 or 4 chronic �kidney disease (CKD) and low vitamin D blood levels (25-hydroxyvitamin D less than 30 ng/mL). It can help treat SHPT by increasing Vitamin D levels and lowering parathyroid hormone or PTH. It is �not for patients with stage 5 CKD or on dialysis.
In the treatment of secondary hyperparathyroidism due to chronic kidney disease on dialysis calcimimetics do not appear to affect the risk of early death. It does decrease the need for a parathyroidectomy but caused more issues with low blood calcium levels and vomiting.
Most people with hyperparathyroidism secondary to chronic kidney disease will improve after renal transplantation, but many will continue to have a degree of residual hyperparathyroidism (tertiary hyperparathyroidism) post-transplant with associated risk of bone loss, etc.
Prevention of osteomalacia rests on having an adequate intake of vitamin D and calcium. Vitamin D3 Supplementation is often needed due to the scarcity of Vitamin D sources in the modern diet.
High phosphate levels can be avoided with phosphate binders and dietary restriction of phosphate. If the kidneys are operating normally, a saline diuresis can be induced to renally eliminate the excess phosphate. In extreme cases, the blood can be filtered in a process called hemodialysis, removing the excess phosphate.
Medical management of OFC consists of Vitamin D treatment, generally alfacalcidol or calcitriol, delivered intravenously. Studies have shown that in cases of OFC caused by either end-stage renal disease or primary hyperparathyoidism, this method is successful not only in treating underlying hyperparathyoidism, but also in causing the regression of brown tumors and other symptoms of OFC.
Nutritional osteomalacia responds well to administration of 2,000-10,000 IU of vitamin D3 by mouth daily. Vitamin D3 (cholecalciferol) is typically absorbed more readily than vitmin D2 (ergocalciferol). Osteomalacia due to malabsorption may require treatment by injection or daily oral dosing of significant amounts of vitamin D3.
If left untreated, the disease will progress to tertiary hyperparathyroidism, where correction of the underlying cause will not stop excess PTH secretion, i.e. parathyroid gland hypertrophy becomes irreversible. In contrast with secondary hyperparathyroidism, tertiary hyperparathyroidism is associated with hypercalcemia rather than hypocalcemia.
As of today, no agreed-upon treatment of Dent's disease is known and no therapy has been formally accepted. Most treatment measures are supportive in nature:
- Thiazide diuretics (i.e. hydrochlorothiazide) have been used with success in reducing the calcium output in urine, but they are also known to cause hypokalemia.
- In rats with diabetes insipidus, thiazide diuretics inhibit the NaCl cotransporter in the renal distal convoluted tubule, leading indirectly to less water and solutes being delivered to the distal tubule. The impairment of Na transport in the distal convoluted tubule induces natriuresis and water loss, while increasing the reabsorption of calcium in this segment in a manner unrelated to sodium transport.
- Amiloride also increases distal tubular calcium reabsorption and has been used as a therapy for idiopathic hypercalciuria.
- A combination of 25 mg of chlorthalidone plus 5 mg of amiloride daily led to a substantial reduction in urine calcium in Dent's patients, but urine pH was "significantly higher in patients with Dent’s disease than in those with idiopathic hypercalciuria (P < 0.03), and supersaturation for uric acid was consequently lower (P < 0.03)."
- For patients with osteomalacia, vitamin D or derivatives have been employed, apparently with success.
- Some lab tests on mice with CLC-5-related tubular damage showed a high-citrate diet preserved kidney function and delayed progress of kidney disease.
Scientists from the Broad Institute, Cambridge, Massachusetts identified the genetic cause of UKD as mutations in the MUC1 gene.
Currently, several compounds are in development for the treatment of CKD. These include the angiotensin receptor blocker (ARB) olmesartan medoxomil and sulodexide, a mixture of low molecular weight heparin and dermatan sulfate.
Aggressive treatment of high blood lipids is warranted. Low-protein, low-salt diet may result in slower progression of CKD and reduction in proteinuria as well as controlling symptoms of advanced CKD to delay dialysis start. Replacement of erythropoietin and calcitriol, two hormones processed by the kidney, is often necessary in people with advanced disease. Guidelines recommend treatment with parenteral iron prior to treatment with erythropoietin. A target hemoglobin level of 9–12 g/dL is recommended. The normalization of hemoglobin has not been found to be of benefit. It is unclear if androgens help with anemia. Phosphate binders are also used to control the serum phosphate levels, which are usually elevated in advanced chronic kidney disease. Although the evidence for them is limited, phosphodiesterase-5 inhibitors and zinc show potential for helping men with sexual dysfunction.
At stage 5 CKD, renal replacement therapy is usually required, in the form of either dialysis or a transplant.
In especially severe cases of OFC, parathyroidectomy, or the full removal of the parathyroid glands, is the chosen route of treatment. Parathyroidectomy has been shown to result in the reversal of bone resorption and the complete regression of brown tumors. In situations where parathyroid carcinoma is present, surgery to remove the tumors has also led to the regression of hyperparathyroidism as well as the symptoms of OFC.
Bone transplants have proven successful in filling the lesions caused by OFC. A report showed that in 8 out of 11 instances where cavities caused by OFC were filled with transplanted bone, the lesion healed and the transplanted bone blended rapidly and seamlessly with the original bone.
In non-diabetics and people with type 1 diabetes, a low protein diet is found to have a preventative effect on progression of chronic kidney disease. However, this effect does not apply to people with type 2 diabetes. A whole food, plant-based diet may help some people with kidney disease. A high protein diet from either animal or plant sources appears to have negative effects on kidney function at least in the short term.
In terms of treatment/management for medullary cystic kidney disease, at present there are no specific therapies for this disease, and there are no specific diets known to slow progression of the disease. However, management for the symptoms can be dealt with as follows: erythropoietin is used to treat anemia, and growth hormone is used when growth becomes an issue. Additionally, a renal transplant may be needed at some point.
Finally, foods that contain potassium and phosphate must be reduced
Treatment depends entirely on the type of hyperparathyroidism encountered.
People with primary hyperparathyroidism who are symptomatic benefit from surgery to remove the parathyroid tumor (parathyroid adenoma). Indications for surgery are as follows:
- Symptomatic hyperparathyroidism
- Asymptomatic hyperparathyroidism with any of the following:
- 24-hour urinary calcium > 400 mg (see Foot Note, below)
- serum calcium > 1 mg/dL above upper limit of normal
- Creatinine clearance > 30% below normal for patient's age
- Bone density > 2.5 standard deviations for below peak (i.e., T-score of -2.5)
- People age < 50
Surgery can rarely result in hypoparathyroidism.
People who received earlier referrals to a nephrology specialist, meaning a longer time before they had to start dialysis, had a shorter initial hospitalization and reduced risk of death after the start of dialysis. The authors highlighted the resulting importance of early referral in slowing progression of chronic kidney disease. Other methods of reducing disease progression include minimizing exposure to nephrotoxins such as NSAIDS and intravenous contrast.
The following are the most common treatments of elevated alkaline phosphatase.
- Treatment of the underlying condition
- Once doctors identifies the cause of elevated ALP and diagnose a treatment, the levels of alkaline phosphatase fluctuates back to normal
- Removal of medication - that is associated with increased levels of alkaline phosphatase
- Birth control pills
- Anti-inflammatory medication
- Narcotic medication
- Hormonal drug
- Steroid
- Antidepressant
- Dietary changes
- Include foods rich in vitamin D
- Lifestyle change
- Healthy diet in association with physical exercise
- Exposure to sunlight which increases the production of vitamin D
Signs and symptoms include ectopic calcification, secondary hyperparathyroidism, and renal osteodystrophy. Abnormalities in phosphate metabolism such as hyperphosphatemia are included in the definition of the new chronic kidney disease-mineral and bone disorder (CKD-MBD).
Certain medications have been associated with an increase in osteoporosis risk; only glucocorticosteroids and anticonvulsants are classically associated, but evidence is emerging with regard to other drugs.
- Steroid-induced osteoporosis (SIOP) arises due to use of glucocorticoids – analogous to Cushing's syndrome and involving mainly the axial skeleton. The synthetic glucocorticoid prescription drug prednisone is a main candidate after prolonged intake. Some professional guidelines recommend prophylaxis in patients who take the equivalent of more than 30 mg hydrocortisone (7.5 mg of prednisolone), especially when this is in excess of three months. Alternate day use may not prevent this complication.
- Barbiturates, phenytoin and some other enzyme-inducing antiepileptics – these probably accelerate the metabolism of vitamin D.
- L-Thyroxine over-replacement may contribute to osteoporosis, in a similar fashion as thyrotoxicosis does. This can be relevant in subclinical hypothyroidism.
- Several drugs induce hypogonadism, for example aromatase inhibitors used in breast cancer, methotrexate and other antimetabolite drugs, depot progesterone and gonadotropin-releasing hormone agonists.
- Anticoagulants – long-term use of heparin is associated with a decrease in bone density, and warfarin (and related coumarins) have been linked with an increased risk in osteoporotic fracture in long-term use.
- Proton pump inhibitors – these drugs inhibit the production of stomach acid; this is thought to interfere with calcium absorption. Chronic phosphate binding may also occur with aluminium-containing antacids.
- Thiazolidinediones (used for diabetes) – rosiglitazone and possibly pioglitazone, inhibitors of PPARγ, have been linked with an increased risk of osteoporosis and fracture.
- Chronic lithium therapy has been associated with osteoporosis.
Bone disease is common among the elderly individual, but adolescents can be diagnosed with this disorder as well. There are many bone disorders such as osteoporosis, Paget's disease, hypothyroidism. Although there are many forms of bone disorders, they all have one thing in common; abnormalities of specific organs involved, deficiency in vitamin D or low Calcium in diet, which results in poor bone mineralization.
The long-term use of lithium, a medication commonly used to treat bipolar disorder and schizoaffective disorders, is known to cause nephropathy.