Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Removable splints result in better outcomes than casting in children with torus fractures of the distal radius.
A Cochrane review of low-intensity pulsed ultrasound to speed healing in newly broken bones found insufficient evidence to justify routine use. Other reviews have found tentative evidence of benefit. It may be an alternative to surgery for established nonunions.
Vitamin D supplements combined with additional calcium marginally reduces the risk of hip fractures and other types of fracture in older adults; however, vitamin D supplementation alone did not reduce the risk of fractures.
Among those affected over the age of 65, 40% are transferred directly to long-term care facilities, long-term rehabilitation facilities, or nursing homes; most of those affected require some sort of living assistance from family or home-care providers. 50% permanently require walkers, canes, or crutches for mobility; all require some sort of mobility assistance throughout the healing process.
Among those affected over the age of 50, approximately 25% die within the next year due to complications such as blood clots (deep venous thrombosis, pulmonary embolism), infections, and pneumonia.
Patients with hip fractures are at high risk for future fractures including hip, wrist, shoulder, and spine. After treatment of the acute fracture, the risk of future fractures should be addressed. Currently, only 1 in 4 patients after a hip fracture receives treatment and work up for osteoporosis, the underlying cause of most of the fractures. Current treatment standards include the starting of a bisphosphonate to reduce future fracture risk by up to 50%.
Over 2.5 million child abuse and neglect cases are reported every year, and thirty-five out of every hundred cases are physical abuse cases. Bone fractures are sometimes part of the physical abuse of children; knowing the symptoms of bone fractures in physical abuse and recognizing the actual risks in physical abuse will help forward the prevention of future abuse and injuries. Astoundingly, these abuse fractures, if not dealt with correctly, have a potential to lead to the death of the child.
Fracture patterns in abuse fractures that are very common with abuse are fractures in the growing part of a long bone (between the shaft and the separated part of the bone), fractures of the humeral shaft (long bone between the shoulder and elbow), ribs, scapula, outer end of the clavicle, and vertebra. Multiple fractures of varying age, bilateral fractures, and complex skull fractures are also linked to abuse. Fractures of varying ages occur in about thirteen percent of all cases.
Most hip fractures are treated surgically by implanting an orthosis. Surgical treatment outweighs the risks of nonsurgical treatment which requires extensive bedrest. Prolonged immobilization increases risk of thromboembolism, pneumonia, deconditioning, and decubitus ulcers. Regardless, the surgery is a major stress, particularly in the elderly. Pain is also significant, and can also result in immobilization, so patients are encouraged to become mobile as soon as possible, often with the assistance of physical therapy. Skeletal traction pending surgery is not supported by the evidence. Regional nerve blocks are useful for pain management in hip fractures.
Red blood cell transfusion is common for people undergoing hip fracture surgery due to the blood loss sustained during surgery and from the injury. Adverse effects of blood transfusion may occur and are avoided by restrictive use of blood transfusion rather than liberal use. Restrictive blood transfusion is based on symptoms of anemia and thresholds lower than the 10 g/dL haemoglobin used for liberal blood transfusion.
If operative treatment is refused or the risks of surgery are considered to be too high the main emphasis of treatment is on pain relief. Skeletal traction may be considered for long term treatment. Aggressive chest physiotherapy is needed to reduce the risk of pneumonia and skilled rehabilitation and nursing to avoid pressure sores and DVT/pulmonary embolism Most people will be bedbound for several months. Non-operative treatment is now limited to only the most medically unstable or demented patients, or those who are nonambulatory at baseline with minimal pain during transfers.
Surgical treatment is typically indicated for high-energy trauma fractures. Intramedullary nailing is a common technique, but external fixation may have equivalent outcomes.
A 2015 Cochrane review found that available evidence for treatment options of distal femur fractures is insufficient to inform clinical practice and that there is a priority for a high-quality trial to be undertaken. Open fractures must undergo urgent surgery to clean and repair them, but closed fractures can be maintained until the patient is stable and ready for surgery.
Nonsurgical treatment of tibia shaft fractures is now limited to closed, stable, isolated, minimally displaced fractures caused by a low-energy mechanism of injury. This treatment consists of application of a long-leg cast.
Children in general are at greater risk because of their high activity levels. Children that have risk-prone behaviors are at even greater risk.
In children, whose bones are still developing, there are risks of either a growth plate injury or a greenstick fracture.
- A greenstick fracture occurs due to mechanical failure on the tension side. That is, since the bone is not so brittle as it would be in an adult, it does not completely fracture, but rather exhibits bowing without complete disruption of the bone's cortex in the surface opposite the applied force.
- Growth plate injuries, as in Salter-Harris fractures, require careful treatment and accurate reduction to make sure that the bone continues to grow normally.
- Plastic deformation of the bone, in which the bone permanently bends, but does not break, also is possible in children. These injuries may require an osteotomy (bone cut) to realign the bone if it is fixed and cannot be realigned by closed methods.
- Certain fractures mainly occur in children, including fracture of the clavicle and supracondylar fracture of the humerus.
Treatment options vary from very conservative to aggressive. Conservative options include rest, observation, pain control, diet changes, use of a nasopharyngeal tube or oropharyngeal tube, and antibiotic therapy. More aggressive options include surgical repair of the hyoid bone and/or tracheotomy. Surgical treatment was used in 10.9% of cases in a 2012 meta-analysis.
Available evidence suggests that treatment depends on the part of the femur that is fractured. Traction may be useful for femoral shaft fractures because it counteracts the force of the muscle pulling the two separated parts together, and thus may decrease bleeding and pain. Traction should not be used in femoral neck fractures or when there is any other trauma to the leg or pelvis. It is typically only a temporary measure used before surgery. It only considered definitive treatment for patients with significant comorbidities that contraindicate surgical management.
Bone mineral density decreases with increasing age. Osteoporotic bone loss can be prevented through an adequate intake of vitamin C and vitamin D, coupled with exercise and by being a non-smoker. A study by Cheng et al. in 1997, showed that greater bone density indicated less risk for fractures in the calcaneus.
The greenstick fracture pattern occurs as a result of bending forces. Activities with a high risk of falling are risk factors. Non-accidental injury more commonly causes spiral (twisting) fractures but a blow on the forearm or shin could cause a green stick fracture. The fracture usually occurs in children and teens because their bones are flexible, unlike adults whose more brittle bones usually break.
Once diagnosed and located, surgery is the most common treatment for a malunion. The surgery consists for the surgeon re-breaking the bone and realigning it to the anatomically correct position. There are different types and levels of extremity where it is possible that the bone will trimmed to allow full orientation at the fractured spot. Most often, either screws, plates or pins are used secure the new alignment. It is possible that a bone graft could be used to help with healing.
After surgery make sure not to smoke or use any nicotine products as that affects the healing process by limiting blood flow. Also, don’t use any NSAIDS (non steroidal anti-inflammatory drug) as that will also affect the blood flow and the healing to the area of fracture. Do not put weight on the area where the fracture and surgery occurred until informed by your doctor and that could lead to other and future problems. After surgery and the surgical stitches are removed you will be put into a cast to complete the healing process. During follow ups an X-ray or a CT scan may be used to verify that the fracture is healing properly and is now in the anatomical correct position.
Treatment consist of a long leg orthopedic cast for several weeks.
Medication can be prescribed to ease the pain. Antibiotics and tetanus vaccination may be used if the bone breaks through the skin. Often, they are treated without surgery. In severe cases, surgery may be done.
The aim of treatment is to minimize pain and to restore as much normal function as possible. Most humerus fractures do not require surgical intervention. One-part and two-part proximal fractures can be treated with a collar and cuff sling, adequate pain medicine, and follow up therapy. Two-part proximal fractures may require open or closed reduction depending on neurovascular injury, rotator cuff injury, dislocation, likelihood of union, and function. For three- and four-part proximal fractures, standard practice is to have open reduction and internal fixation to realign the separate parts of the proximal humerus. A humeral hemiarthroplasty may be required in proximal cases in which the blood supply to the region is compromised. Fractures of the humerus shaft and distal part of the humerus are most often uncomplicated, closed fractures that require nothing more than pain medicine and wearing a cast or sling for a few weeks. In shaft and distal cases in which complications such as damage to the neurovascular bundle exist, then surgical repair is required.
Bone stimulation may be with either electromagnetic or ultrasound waves. Ultrasound stimulation has tentative evidence of supporting better healing in long bones that have not healed after three months. Evidence; from a Cochrane review however, does not show that ultrasound decreases rates of nonunion. Another review has, however, suggested it as an alternative to surgery.
Surgical treatment options include:
- Removal of all scar tissue from between the fracture fragments
- Immobilization of the fracture with internal or external fixation. Metal plates, pins, screws, and rods, that are screwed or driven into a bone, are used to stabilize the broken bone fragments.
- Bone grafting. Donor bone or autologous bone (harvested from the same person undergoing the surgery) is used as a stimulus to bone healing. The presence of the bone is thought to cause stem cells in the circulation and marrow to form cartilage, which then turns to bone, instead of a fibrous scar that forms to heal all other tissues of the body. Bone is the only tissue that can heal without a fibrous scar. Autologus bone graft is the "gold standard" treatment of the non union the bone is obtained from the iliac crest.
In simple cases healing may be evident within 3 months. Gavriil Ilizarov revolutionized the treatment of recalcitrant nonunions demonstrating that the affected area of the bone could be removed, the fresh ends "docked" and the remaining bone lengthened using an external fixator device. The time course of healing after such treatment is longer than normal bone healing. Usually there are signs of union within 3 months, but the treatment may continue for many months beyond that.
The first line treatment should be reduction of movements for 6 to 12 weeks. Wooden-soled shoes or a cast should be given for this purpose. In rare cases in which stress fracture occurs with a cavus foot, plantar fascia release may be appropriate.
Bone stability after a fracture occurs between 3 and 4 weeks. Some experts suggest not wearing glasses or blowing the nose during this time as it can affect the bone alignment. Full bone fusion occurs between 4 and 8 weeks. General activity is fine after 1–2 weeks, but contact sports are not advisable for at least 2–3 months, depending on the extent of injury. It is recommended that when participating in sports a face guard should be worn for at least 6 weeks post-injury.
The arm must be supported by use of a splint or sling to keep the joint stable and decrease the risk of further damage. Usually, a figure-of-eight splint that wraps the shoulders to keep them forced back is used and the arm is placed in a clavicle strap for comfort.
Current practice is generally to provide a sling, and pain relief, and to allow the bone to heal itself, monitoring progress with X-rays every week or few weeks. Surgery is employed in 5–10% of cases. However, a recent study supports primary plate fixation of completely displaced midshaft clavicular fractures in active adult patients.
If the fracture is at the lateral end, the risk of nonunion is greater than if the fracture is of the shaft.
The use of surgery to treat a Jefferson fracture is somewhat controversial. Non-surgical treatment varies depending on if the fracture is stable or unstable, defined by an intact or broken transverse ligament and degree of fracture of the anterior arch. An intact ligament requires the use of a soft or hard collar, while a ruptured ligament may require traction, a halo or surgery. The use of rigid halos can lead to intracranial infections and are often uncomfortable for individuals wearing them, and may be replaced with a more flexible alternative depending on the stability of the injured bones, but treatment of a stable injury with a halo collar can result in a full recovery. Surgical treatment of a Jefferson fracture involves fusion or fixation of the first three cervical vertebrae; fusion may occur immediately, or later during treatment in cases where non-surgical interventions are unsuccessful. A primary factor in deciding between surgical and non-surgical intervention is the degree of stability as well as the presence of damage to other cervical vertebrae.
Though a serious injury, the long-term consequences of a Jefferson's fracture are uncertain and may not impact longevity or abilities, even if untreated. Conservative treatment with an immobilization device can produce excellent long-term recovery.
Hyoid bones fractures represent 0.002% of all fractures; they are rare because the hyoid bone is well-protected by its location in the neck behind the mandible and in front of the cervical spine, as well as its mobility. 91.3% of hyoid bone fractures occur in men.