Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Initial management includes the relief of symptoms and correcting electrolyte and fluid imbalance that may occur with vomiting. Antiemetics, such as dimenhydrinate, are used to treat the nausea. Pain may be treated with anti-inflammatories, NSAIDs such as ketorolac or diclofenac. Opioids, such as morphine, less commonly may be used. NSAIDs are more or less equivalent to opioids. Hyoscine butylbromide, an antispasmodic, is also indicated in biliary colic.
In biliary colic, the risk of infection is minimal and therefore antibiotics are not required. Presence of infection indicates cholecystitis.
It is unclear whether those experiencing a gallstone attack should receive surgical treatment or not. The scientific basis to assess whether surgery outperformed other treatment was insufficient and better studies were needed as of a SBU report in 2017. Treatment of biliary colic is dictated by the underlying cause. The presence of gallstones, usually visualized by ultrasound, generally necessitates a surgical treatment (removal of the gall bladder, typically via laparoscopy). Removal of the gallbladder with surgery, known as a cholecystectomy, is the definitive surgical treatment for biliary colic. A 2013 Cochrane review found tentative evidence to suggest that early gallbladder removal may be better than delayed removal. Early laparoscopic cholescystectomy happens within 72 hours of diagnosis. In a Cochrane review that evaluated receiving early versus delayed surgery, they found that 23% of those who waited on average 4 months ended up in hospital for complications, compared to none with early intervention with surgery. Early intervention has other advantages including reduced number of visits to the emergency department, less conversions to an open surgery, less operating time required, reduced time in hospital post operatively. The Swedish agency SBU estimated in 2017 that increasing acute phase surgeries could
free multiple in-hospital days per patient and would additionally spare pain and suffering in wait of receiving an operation. The report found that those with acute inflammation of the gallbladder can be surgically treated in the acute phase, within a few days of symptom debut, without increasing the risk for complications (compared to when the surgery is done later in an asymptomatic stage).
Cholangitis requires admission to hospital. Intravenous fluids are administered, especially if the blood pressure is low, and antibiotics are commenced. Empirical treatment with broad-spectrum antibiotics is usually necessary until it is known for certain which pathogen is causing the infection, and to which antibiotics it is sensitive. Combinations of penicillins and aminoglycosides are widely used, although ciprofloxacin has been shown to be effective in most cases, and may be preferred to aminoglycosides because of fewer side effects. Metronidazole is often added to specifically treat the anaerobic pathogens, especially in those who are very ill or at risk of anaerobic infections. Antibiotics are continued for 7–10 days. Drugs that increase the blood pressure (vasopressors) may also be required to counter the low blood pressure.
Gallstone risk increases for females (especially before menopause) and for people near or above 40 years; the condition is more prevalent among both North and South Americans and among those of European descent than among other ethnicities. A lack of melatonin could significantly contribute to gallbladder stones, as melatonin inhibits cholesterol secretion from the gallbladder, enhances the conversion of cholesterol to bile, and is an antioxidant, which is able to reduce oxidative stress to the gallbladder. Researchers believe that gallstones may be caused by a combination of factors, including inherited body chemistry, body weight, gallbladder motility (movement), and low calorie diet. The absence of such risk factors does not, however, preclude the formation of gallstones.
Nutritional factors that may increase risk of gallstones include constipation; eating fewer meals per day; low intake of the nutrients folate, magnesium, calcium, and vitamin C; low fluid consumption; and, at least for men, a high intake of carbohydrate, a high glycemic load, and high glycemic index diet. Wine and whole-grained bread may decrease the risk of gallstones.
Rapid weight loss increases risk of gallstones. Patients taking orlistat, a weight loss drug, may already be at increased risk for the formation of gallstones. Weight loss with orlistat can increase the risk of gallstones. On the contrary, ursodeoxycholic acid (UDCA), a bile acid, also a drug marketed as Ursodiol, appears to prevent formation of gallstones during weight loss. A high fat diet during weight loss also appears to prevent gallstones.
Cholecystokinin deficiency caused by celiac disease increases risk of gallstone formation, especially when diagnosis of celiac disease is delayed.
Pigment gallstones are most commonly seen in the developing world. Risk factors for pigment stones include hemolytic anemias (such as from sickle-cell disease and hereditary spherocytosis), cirrhosis, and biliary tract infections. People with erythropoietic protoporphyria (EPP) are at increased risk to develop gallstones. Additionally, prolonged use of proton pump inhibitors has been shown to decrease gallbladder function, potentially leading to gallstone formation.
Cholesterol modifying medications can affect gallstone formation. Statins inhibit cholesterol synthesis and there is evidence that their use may decrease the risk of getting gallstones. Fibrates increase cholesterol concentration in bile and their use has been associated with an increased risk of gallstones.
Not all gallstones implicated in ascending cholangitis actually originate from the gallbladder, but cholecystectomy (surgical removal of the gallbladder) is generally recommended in people who have been treated for cholangitis due to gallstone disease. This is typically delayed until all symptoms have resolved and ERCP or MRCP have confirmed that the bile duct is clear of gallstones. Those who do not undergo cholecystectomy have an increased risk of recurrent biliary pain, jaundice, further episodes of cholangitis, and need for further ERCP or cholecystostomy; the risk of death is also significantly increased.
The clinical course of biliary sludge can do one of three things: (1) it can resolve completely, (2) wax and wane, or (3) progress to gallstones. If the biliary sludge has a cause (e.g. pregnancy), it oftentimes is resolved when the underlying cause is removed.
Cholecystectomy (gallbladder removal) has a 99% chance of eliminating the recurrence of cholelithiasis. Surgery is only indicated in symptomatic patients. The lack of a gallbladder may have no negative consequences in many people. However, there is a portion of the population—between 10 and 15%—who develop a condition called postcholecystectomy syndrome which may cause gastrointestinal distress and persistent pain in the upper-right abdomen, as well as a 10% risk of developing chronic diarrhea.
There are two surgical options for cholecystectomy:
- Open cholecystectomy is performed via an abdominal incision (laparotomy) below the lower right ribs. Recovery typically requires 3–5 days of hospitalization, with a return to normal diet a week after release and to normal activity several weeks after release.
- Laparoscopic cholecystectomy, introduced in the 1980s, is performed via three to four small puncture holes for a camera and instruments. Post-operative care typically includes a same-day release or a one night hospital stay, followed by a few days of home rest and pain medication. Laparoscopic cholecystectomy patients can, in general, resume normal diet and light activity a week after release, with some decreased energy level and minor residual pain continuing for a month or two. Studies have shown that this procedure is as effective as the more invasive open cholecystectomy, provided the stones are accurately located by cholangiogram prior to the procedure so that they can all be removed.
Laparoscopic cholecystectomy has been used to treat the condition when due to dyskinesia of the gallbladder.
Symptoms may persist after cholecystectomy, and have been linked to the use of proton pump inhibitors.
Osteopathic treatment, oral magnesium supplementation with 325 mg and the use of digestive enzymes caused improvement in one case.
For patients without symptoms, no treatment is recommended. If patients become symptomatic and/or develop complications, cholecystectomy is indicated. For those who are poor surgical candidates, endoscopic sphincterotomy may be performed to reduce the risk of developing pancreatitis.
For most people with acute cholecystitis, the treatment of choice is surgical removal of the gallbladder, laparoscopic cholecystectomy. Laparoscopic cholecystectomy is performed using several small incisions located at various points across the abdomen. Several studies have demonstrated the superiority of laparoscopic cholecystectomy when compared to open cholecystectomy (using a large incision in the right upper abdomen under the rib cage). People undergoing laparoscopic surgery report less incisional pain postoperatively as well as having fewer long term complications and less disability following the surgery. Additionally, laparoscopic surgery is associated with a lower rate of surgical site infection.
During the days prior to laparoscopic surgery, studies showed that outcomes were better following early removal of the gallbladder, preferably within the first week. Early laparoscopic cholecystectomy (within 7 days of visiting a doctor with symptoms) as compared to delayed treatment (more than 6 weeks) may result in shorter hospital stays and a decreased risk of requiring an emergency procedure. There is no difference in terms of negative outcomes including bile duct injury or conversion to open cholecystectomy. For early cholecystectomy, the most common reason for conversion to open surgery is inflammation that hides Calot's triangle. For delayed surgery, the most common reason was fibrotic adhesions.
Supportive measures may be instituted prior to surgery. These measures include fluid resuscitation. Intravenous opioids can be used for pain control.
Antibiotics are often not needed. If used they should target enteric organisms (e.g. Enterobacteriaceae), such as "E. coli" and "Bacteroides". This may consist of a broad spectrum antibiotic; such as piperacillin-tazobactam, ampicillin-sulbactam, ticarcillin-clavulanate (Timentin), a third generation cephalosporin (e.g.ceftriaxone) or a quinolone antibiotic (such as ciprofloxacin) and anaerobic bacteria coverage, such as metronidazole. For penicillin allergic people, aztreonam or a quinolone with metronidazole may be used.
In cases of severe inflammation, shock, or if the person has higher risk for general anesthesia (required for cholecystectomy), an interventional radiologist may insert a percutaneous drainage catheter into the gallbladder ('percutaneous cholecystostomy tube') and treat the person with antibiotics until the acute inflammation resolves. A cholecystectomy may then be warranted if the person's condition improves.
Homeopathic approaches to treating cholecystitis have not been validated by evidence and should not be used in place of surgery.
Although there is no curative treatment, several clinical trials are underway that aim to slow progression of this liver disease. Obeticholic acid is being investigated as a possible treatment for PSC due to its antifibrotic effects. Simtuzumab is a monoclonal antibody against the pro-fibrotic enzyme LOXL2 that is being developed as a possible therapy for PSC.
Women are almost twice as likely as men to form gallstones especially during the fertile years; the gap narrows after the menopause. The underlying mechanism is female sex hormones; parity, oral contraceptive use and estrogen replacement therapy are established risk factors for cholesterol gallstone formation. Female sex hormones adversely influence hepatic bile secretion and gallbladder function. Estrogens increase cholesterol secretion and diminish bile salt secretion, while progestins act by reducing bile salt secretion and impairing gallbladder emptying leading to stasis. A new 4th generation progestin, drospirenone, used in some oral contraceptives may further heighten the risk of gallstone disease and cholecystectomy; however, the increased risk is quite modest and not likely to be clinically meaningful.
A retrospective (historical) cohort study was performed on a very large data base including 1980 and 1981 Medicaid billing data from the states of Michigan and Minnesota in which 138,943 users of OCs were compared with 341,478 nonusers. Oral contraceptives were shown as risk factors for gallbladder disease, although the risk is of sufficient magnitude to be of potential clinical importance only in young women.
The 1984 Royal College of General Practitioners' Oral Contraception Study suggests that, in the long-term, oral contraceptives are not associated with any increased risk of gallbladder disease, although there is an acceleration of the disease in those women susceptible to it.
Newer research suggests otherwise. A 1993 meta-analysis concludes that oral contraceptive use is associated with a slightly and transiently increased rate of gallbladder disease, but laters confirms that modern low-dose oral contraceptives are safer than older formulas, though an effect cannot be excluded.
A 2001 comparative study of the IMS LifeLink Health Plan Claims Database interpreted that in a large cohort of women using oral contraceptives, there was found a small, statistically significant increase in the risk of gallbladder disease associated with desogestrel, drospirenone and norethisterone compared with levonorgestrel. No statistically significant increase in risk was associated with the other formulations of oral contraceptive (etynodiol diacetate, norgestrel and norgestimate).
A prospective study in 1994 noted that body mass index remains the strongest predictor of symptomatic gallstones among young women. Other risk factors are having over four pregnancies, weight gain, and cigarette smoking. Alcohol was shown to have an inverse relationship between use and gallbladder disease.
Some individuals may benefit from diet modification, such as a reduced fat diet, following cholecystectomy. The liver produces bile and the gallbladder acts as reservoir. From the gallbladder, bile enters the intestine in individual portions. In the absence of gallbladder, bile enters the intestine constantly, but in small quantities. Thus, it may be insufficient for digestion of fatty foods. Postcholecystectomy syndrome treatment depends on the identified violations that led to it. Typically, the patient is recommended dietary restriction table with fatty foods, enzyme preparations, antispasmodics, sometimes cholagogue.
If the pain is caused by biliary microlithiasis, oral ursodeoxycholic acid can alleviate the condition.
A trial of bile acid sequestrant therapy is recommended for bile acid diarrhoea.
Extrahepatic cholestasis can usually be treated by surgery.
Pruritis in cholestatic jaundice is treated by Antihistamines, Ursodeoxycholic Acid, Phenobarbital
No pharmacologic treatment has been approved by the U.S. Food and Drug Administration for PSC. Some experts recommend a trial of ursodeoxycholic acid (UDCA), a bile acid occurring naturally in small quantities in humans, as it has been shown to lower elevated liver enzyme numbers in patients with PSC and has proven effective in other cholestatic liver diseases. However, UDCA has yet to be shown to clearly lead to improved liver histology and survival. Guidelines from the American Association for the Study of Liver Diseases and the American College of Gastroenterology do not support the use of UDCA but guidelines from the European Association for the Study of the Liver do endorse the use of moderate doses (13-15 milligrams per kilogram) of UDCA for PSC.
Supportive treatment for PSC symptoms is the cornerstone of management. These therapies are aimed at relieving symptoms such as itching with antipruritics (e.g. bile acid sequestrants such as (cholestyramine)); antibiotics to treat episodes of acute cholangitis; and vitamin supplements, as people with PSC are often deficient in fat-soluble vitamins (vitamin A, vitamin D, vitamin E, and vitamin K).
ERCP and specialized techniques may also be needed to help distinguish between a benign PSC stricture and a bile duct cancer (cholangiocarcinoma).
Liver transplantation is the only proven long-term treatment of PSC, although only a fraction of individuals with PSC will need it. Indications for transplantation include recurrent bacterial cholangitis, decompensated cirrhosis, hepatocellular carcinoma, hilar cholangiocarcinoma, and complications of portal hypertension. Not all patients are candidates for liver transplantation, and some will experience disease recurrence afterward.
The incidence of colic can be reduced by restricted access to simple carbohydrates including sugars from feeds with excessive molasses, providing clean feed and drinking water, preventing the ingestion of dirt or sand by using an elevated feeding surface, a regular feeding schedule, regular deworming, regular dental care, a regular diet that does not change substantially in content or proportion and prevention of heatstroke. Horses that bolt their feed are at risk of colic, and several management techniques may be used to slow down the rate of feed consumption.
Supplementing with previously mentioned form of pysllium fiber may reduce risk of sand colic if in a high-risk area. Most supplement forms are given one week per month and available wherever equine feed is purchased.
Turnout is thought to reduce the likelihood of colic, although this has not been proven. It is recommended that a horse receive ideally 18 hours of grazing time each day, as in the wild. However, many times this is difficult to manage with competition horses and those that are boarded, as well as for animals that are easy keepers with access to lush pasture and hence at risk of laminitis. Turnout on a dry lot with lower-quality fodder may have similar beneficial effects.
Specific causes of colic are best managed with certain drugs. These include:
- Spasmolytic agents, most commonly Buscopan, especially in the case of gas colic.
- Pro-motility agents: metoclopramide, lidocaine, bethanechol, and erythromycin are used in cases of ileus.
- Anti-inflammatories are often used in the case of enteritis or colitis.
- Anti-microbials may be administered if an infectious agent is suspected to be the underlying cause of colic.
- Phenylephrine: used in cases of nephrosplenic entrapment to contract the spleen, and is followed by light exercise to try to shift the displaced colon back into its normal position.
- Psyllium may be given via nasogastric tube to treat sand colic.
- Anthelminthics for parasitic causes of colic.
Hepatolithiasis is the presence of gallstones in the biliary ducts of the liver. Treatment is usually surgical. It is rare in Western countries, but prevalent in East Asia.
The gallstones are normally found proximal to the left and right hepatic ducts. The causes of the disease are poorly understood, but it is suspected that genetics, diets and environmental causes may contribute. It is more common in those of low socioeconomic status who suffer from malnutrition. Typically is strikes between 50 and 70 years old, with neither men nor women more likely to acquire it.
The prevalence in east Asia ranges is as high as 30-50%, while in the west it is rare. However, immigration has increased its prevalence in the West. Countries that have seen more economic development have also seen a reduction in the rates of the disease.
Some patients have these gallstones with no symptoms and the disease is only detected through abdominal imaging. For those with symptoms, common ones are abdominal pain, jaundice and fever. The gallstones can cause more serious conditions like fibrinolys disorder or gallstone pancreatitis.
Biliary dyskinesia is a disorder of some component of biliary part of the digestive system in which bile physically can not move normally in the proper direction through the tubular biliary tract. It most commonly involves abnormal biliary tract peristalsis muscular coordination within the gallbladder in response to dietary stimulation of that organ to squirt the liquid bile through the common bile duct into the duodenum. Ineffective peristaltic contraction of that structure produces postprandial (after meals) right upper abdominal pain (cholecystodynia) and almost no other problem. When the dyskinesia is localized at the biliary outlet into the duodenum just as increased tonus of that outlet sphincter of Oddi, the backed-up bile can cause pancreatic injury with abdominal pain more toward the upper left side. In general, biliary dyskinesia is the disturbance in the coordination of peristaltic contraction of the biliary ducts, and/or reduction in the speed of emptying of the biliary tree into the duodenum.
Mortality is indirect and caused by complications. After cholangitis occurs, patients typically die within 5–10 years.
Choledochal cysts are treated by surgical excision of the cyst with the formation of a roux-en-Y anastomosis hepaticojujenostomy/ choledochojujenostomy to the biliary duct.
Future complications include cholangitis and a 2% risk of malignancy, which may develop in any part of the biliary tree. A recent article published in Journal of Surgery suggested that choledochal cysts could also be treated with single-incision laparoscopic hepaticojejunostomy with comparable results and less scarring. In cases of saccular type of cyst, excision and placement of T-shaped tube is done.
Currently, there is no accepted indication for fetal intervention in the management of prenatally suspected choledochal cysts.
The treatment depends on clinical features and the location of the biliary abnormality. When the disease is localized to one hepatic lobe, hepatectomy relieves symptoms and appears to remove the risk of malignancy. Good evidence suggests that malignancy complicates Caroli disease in roughly 7% of cases.
Antibiotics are used to treat the inflammation of the bile duct, and ursodeoxycholic acid is used for hepatolithiasis. Ursodiol is given to treat cholelithiasis. In diffuse cases of Caroli disease, treatment options include conservative or endoscopic therapy, internal biliary bypass procedures, and liver transplantation in carefully selected cases. Surgical resection has been used successfully in patients with monolobar disease. An orthotopic liver transplant is another option, used only when antibiotics have no effect, in combination with recurring cholangitis. With a liver transplant, cholangiocarcinoma is usually avoided in the long run.
Family studies are necessary to determine if Caroli disease is due to inheritable causes. Regular follow-ups, including ultrasounds and liver biopsies, are performed.
In RPC the gallstones found within the biliary system are calcium bilirubinate stones or pigmented calcium stones. Calcium bilirubinate stones are prevalent in Asia and very rare in Europe and the United States. In addition to the presence of these friable concretions of various shapes and sizes within the biliary tree, the bile is often muddy in consistency and contains numerous fine particles of calcium bilirubinate. This differs greatly from cholesterol stones, which are common in Europe and the United States. Pure cholesterol stones contain >96% cholesterol whereas mixed cholesterol stones contain 71.3% cholesterol. The formation of calcium bilirubinate stones in RPC has been attributed to the high incidence of infection with "Escherichia coli" in the bile. In humans, the majority of bilirubin is excreted in the bile as bilirubin glucuronide.
Hepatolithiasis is associated with Clonorchis sinensis and Ascaris lumbricoides infestation of the liver. This theory is based on high incidence of dead parasites or ova within stone in autopsy findings.