Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
MCDK is not treatable. However, the patient is observed periodically for the first few years during which ultrasounds are generally taken to ensure the healthy kidney is functioning properly and that the unhealthy kidney is not causing adverse effects. In severe cases MCDK can lead to neonatal fatality (in bilateral cases), however in unilateral cases the prognosis might be better (it would be dependent on associated anomalies).
In regard to the epidemiology of multicystic dysplasia kidney, the incidence of MCDK is estimated to be 1 in every 4,000 live births, making it rare in terms of the general population.
Scientists from the Broad Institute, Cambridge, Massachusetts identified the genetic cause of UKD as mutations in the MUC1 gene.
In 2008 researchers found autosomal dominant mutations in the RET and GDNF genes to be linked to renal agenesis in unrelated stillborn fetuses through PCR and direct sequence analysis . In the study, DNA from 33 stillborn fetuses were sequenced for mutations in RET, GDNF and GFRA1. Nineteen of the fetuses had BRA, ten had URA and 4 had congenital renal dysplasia. Seven of the 19 BRA fetuses were found to have a mutation in the RET gene (37%), while two of the ten URA fetuses did (20%). One of the URA fetuses had two RET mutations and one GDNF mutation. There were no GFRA1 mutations found.
However, the results of Skinner et al. study were questioned by a more recent study with a larger number of cases . In this study 105 fetuses were analyzed. Sixty-five fetuses had BRA while 24 had URA with an abnormal contralateral kidney. Mutations in the RET gene were only found in seven of the fetuses (6.6%).
In 2014 researchers found autosomal recessive mutations in ITGA8 in three members of two unrelated families utilizing Exome Sequencing . One of the families was consanguineous.
In 2017 researchers identified heritable autosomal dominant mutations in the gene GREB1L in two unrelated families as being the cause of both BRA and URA utilizing Exome Sequencing and direct sequencing analysis . This is the first reported genetic lesion implicated in the activation of Retinoic Acid Receptor (RAR) Targets that has been associated with renal agenesis in humans. The researchers found two different GREB1L mutations, each being unique to their respective pedigrees. In total, there were 23 individuals analyzed between the two families, four of which had BRA and five of which had URA. GREB1L mutations were identified in all of the affected individuals as well as in three unaffected family members, demonstrating incomplete penetrance and variable expressivity.
There are several hundred to perhaps several thousand genes that, if they had the right kind of mutation, could lead to renal agenesis in humans. It is possible that each individual or family experiencing renal agenesis has a unique gene or genetic mutation causing the condition due to the fact that there are so many genes that are critical to proper renal development. See Rosenblum S et al. for an excellent review of Congenital abnormalities of the Kidney and Urinary Tract
Chromosomal anomalies have been associated with BRA in certain cases (chromosomes 1, 2, 5 and 21), but these anomalies were not inherited and have not been observed in subsequent cases. Additionally, neither extreme substance abuse or environmental factors (high power line, mercury, ground water issues, etc.) have been reported to be linked to an increased incidence of BRA or other cause of Potter sequence. However, renal agenesis and other causes of oligohydramnios sequence have been linked to a number of other conditions and syndromes to include Down syndrome, Kallmann syndrome, branchio-oto-renal syndrome and others.
Often, aggressive treatment is unnecessary for people with MSK disease that does not cause any symptoms (asymptomatic). In such cases, treatment may consist of maintaining adequate fluid intake, with the goal of decreasing the risk of developing kidney stones (nephrolithiasis). Cases of recurrent kidney stone formation may warrant evaluation for possible underlying metabolic abnormalities.
In patients with low levels of citrate in the urine (hypocitraturia) and incomplete distal renal tubular acidosis, treatment with potassium citrate helps prevent the formation of new kidney stones. Urinary tract infections, when they occur, should also be treated.
Patients with the more rare form of MSK marked by chronic pain typically require pain management. Non-obstructing stones in MSK can be associated with significant and chronic pain even if they're not passing. The pain in this situation can be constant. It is not certain what causes this pain but researchers have proposed that the small numerous stones seen in MSK may cause obstruction of the small tubules and collecting ducts in the kidney which could lead to the pain. This pain can often be debilitating and treatment is challenging. Narcotic medication even with large quantities is sometimes not adequate. Some success with pain control has been reported using laser lithotripsy (called “ureteroscopic laser papillotomy”).
The frequency is unknown, but the disease is considered to be very rare.
Renal agenesis is a medical condition in which one (unilateral) or both (bilateral) fetal kidneys fail to develop.
Unilateral and Bilateral Renal Agenesis in humans, mice and zebra fish has been linked to mutations in the gene GREB1L. It has also been associated with mutations in the genes "RET" or "UPK3A". in humans (see Rosenblum et al 2017 for review) and mice respectively.
There is no FDA-approved treatment. However, it has been shown that mild to moderate dietary restrictions slow the progression of autosomal dominant polycystic kidney disease (ADPKD).
If and when the disease progresses enough in a given case, the nephrologist or other practitioner and the patient will have to decide what form of renal replacement therapy will be used to treat end-stage kidney disease (kidney failure, typically stage 4 or 5 of chronic kidney disease).
That will either be some form of dialysis, which can be done at least two different ways at varying frequencies and durations (whether it is done at home or in the clinic depends on the method used and the patient's stability and training) and eventually, if they are eligible because of the nature and severity of their condition and if a suitable match can be found, unilateral or bilateral kidney transplantation.
A Cochrane Review study of autosomal dominant polycystic kidney disease made note of the fact that it is important at all times, while avoiding antibiotic resistance, to control infections of the cysts in the kidneys, and if affected, the liver, when needed for a certain duration to combat infection, by using, quote: "bacteriostatic and bacteriocidal drugs".
In the general population, the frequency of medullary sponge kidney disease is reported to be 0.02–0.005%; that is, 1 in 5000 to 1 in 20,000. The frequency of medullary sponge kidney has been reported by various authors to be 1221% in patients with kidney stones. The disease is bilateral in 70% of cases.
In terms of treatment/management for medullary cystic kidney disease, at present there are no specific therapies for this disease, and there are no specific diets known to slow progression of the disease. However, management for the symptoms can be dealt with as follows: erythropoietin is used to treat anemia, and growth hormone is used when growth becomes an issue. Additionally, a renal transplant may be needed at some point.
Finally, foods that contain potassium and phosphate must be reduced
The treatment of branchio-oto-renal syndrome is done per each affected area (or organ). For example, a person with hearing problems should have appropriate supports and prompt attention for any inflammation of the ear.
A specialist should observe any kidney problems. Surgical repair may be needed depending on the degree of a defect or problem, whether a transplant or dialysis is needed.
ADPKD individuals might have a normal life; conversely, ARPKD can cause kidney dysfunction and can lead to kidney failure by the age of 40-60. ADPKD1 and ADPKD2 are very different, in that ADPKD2 is much milder.
Currently, there are no therapies proven effective to prevent the progression of polycystic kidney disease (autosomal dominant).
Ear agenesis is a medical condition in which people are born without ears.
Because the middle and inner ears are necessary for hearing, people with complete agenesis of the ears are totally deaf. Minor agenesis that affects only the visible parts of the outer ear, which may be called microtia, typically produces cosmetic concerns and perhaps hearing impairment if the opening to the ear canal is blocked, but not deafness.
Eye agenesis is a medical condition in which people are born with no eyes.
There are no treatment to return to its normal functions. However, there are treatments for the different symptoms.
For the Developmental symptoms, Educational intervention and speech therapy beginning in infancy could help to reduce the high risk for motor, cognitive, speech, and language delay
For theSkeletal features, referral to an orthopedist for consideration of surgical release of contractures. In addition,early referral to physical therapy could help increase joint mobility.
Lastly, Thyroid hormone replacement could help out the thyroid dysfunction
Birt-Hogg-Dubé Syndrome patients, families, and caregivers are encouraged to join the NIH Rare Lung Diseases Consortium Contact Registry. This is a privacy protected site that provides up-to-date information for individuals interested in the latest scientific news, trials, and treatments related to rare lung diseases.
Although rare, this condition is often treatable with surgery. In most cases, the blind hemivagina is opened, and the fluid drained.
Lip pits may be surgically removed either for aesthetic reasons or discomfort due to inflammation caused by bacterial infections or chronic saliva excretion, though spontaneous shrinkage of the lip pits has occurred in some rare cases. Chronic inflammation has also been reported to cause squamous-cell carcinoma. It is essential to completely remove the entire lip pit canal, as mucoid cysts can develop if mucous glands are not removed. A possible side effect of removing the lip pits is a loose lip muscle. Other conditions associated with VWS, including CL, CP, congenital heart defects, etc. are surgically corrected or otherwise treated as they would be if they were non-syndromic.
Renal cysts and diabetes syndrome (RCAD), also known as MODY 5, is a form of maturity onset diabetes of the young.
HNF1β-related MODY is one of the less common forms of MODY, with some distinctive clinical features, including atrophy of the pancreas and several forms of renal disease. HNF1β, also known as transcription factor 2 (TCF2), is involved in early stages of embryonic development of several organs, including the pancreas, where it contributes to differentiation of pancreatic endocrine Ngn3 cell progenitors from non-endocrine embryonic duct cells. The gene is on chromosome 17q.
The degree of insulin deficiency is variable. Diabetes can develop from infancy through middle adult life, and some family members who carry the gene remain free of diabetes into later adult life. Most of those who develop diabetes show atrophy of the entire pancreas, with mild or subclincal deficiency of exocrine as well as endocrine function.
The non-pancreatic manifestations are even more variable. Kidney and genitourinary malformation and diseases may occur, but inconsistently even within a family, and the specific conditions include a range of apparently unrelated anomalies and processes. The most common genitourinary condition is cystic kidney disease, but there are many varieties even of this. Renal effects begin with structural alterations (small kidneys, renal cysts, anomalies of the renal pelvis and calices), but a significant number develop slowly progressive renal failure associated with chronic cystic disease of the kidneys. In some cases, renal cysts may be detected in utero. Kidney disease may develop before or after hyperglycemia, and a significant number of people with MODY5 are discovered in renal clinics.
With or without kidney disease, some people with forms of HNF1β have had various minor or major anomalies of the reproductive system. Male defects have included epididymal cysts, agenesis of the vas deferens, or infertility due to abnormal spermatozoa. Affected women have been found to have vaginal agenesis, hypoplastic, or bicornuate uterus.
Liver enzyme elevations are common, but clinically significant liver disease is not. Hyperuricaemia and early onset gout have occurred.
It is the most common genetic cause of end stage renal disease (renal failure) in childhood and adolescence.
Juvenile nephronophthisis is the juvenile form of nephronophthisis that causes end stage renal disease around the age of 13; infantile nephronophthisis and adolescent nephronophthisis cause ESRD around the ages of 1 and 19, respectively.
A number of features found with Nasodigitoacoustic syndrome can be managed or treated. Sensorineural hearing loss in humans may be caused by a loss of hair cells (sensory receptors in the inner ear that are associated with hearing). This can be hereditary and/or within a syndrome, as is the case with nasodigitoacoustic syndrome, or attributed to infections such as viruses. For the management of sensorineural hearing loss, hearing aids have been used. Treatments, depending upon the cause and severity, may include a pharmacological approach (i.e., the use of certain steroids), or surgical intervention, like a cochlear implant.
Pulmonary, or pulmonic stenosis is an often congenital narrowing of the pulmonary valve; it can be present in nasodigitoacoustic-affected infants. Treatment of this cardiac abnormality can require surgery, or non-surgical procedures like balloon valvuloplasty (widening the valve with a balloon catheter).
A thorough diagnosis should be performed on every affected individual, and siblings should be studied for deafness, parathyroid and renal disease. The syndrome should be considered in infants who have been diagnosed prenatally with a chromosome 10p defect, and those who have been diagnosed with well defined phenotypes of urinary tract abnormalities. Management consists of treating the clinical abnormalities at the time of presentation. Prognosis depends on the severity of the kidney disease.
The epidemiology of branchio-oto-renal syndrome has it with a prevalence of 1/40,000 in Western countries.A 2014 review found 250 such cases in the country of Japan
The disease can be treated only to slow down the development, by use of cyclosporine A and ACE inhibitors, but not stopped or cured.