Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The standard treatment for an uncomplicated skin or soft tissue abscess is opening and draining. There does not appear to be any benefit from also using antibiotics in most cases. A small amount of evidence did not find benefit from packing the abscess with gauze.
The abscess should be inspected to identify if foreign objects are a cause, which may require their removal. If foreign objects are not the cause, incising and draining the abscess is standard treatment.
In critical areas where surgery presents a high risk, it may be delayed or used as a last resort. The drainage of a lung abscess may be performed by positioning the patient in a way that enables the contents to be discharged via the respiratory tract. Warm compresses and elevation of the limb may be beneficial for a skin abscess.
The infection is frequently penicillin resistant. There are a number of antibiotics options including amoxicillin/clavulanate, clindamycin, or metronidazole in combination with benzylpenicillin (penicillin G) or penicillin V. Piperacillin/tazobactam may also be used.
Treatment is by removing the pus, antibiotics, sufficient fluids, and pain medication. Steroids may also be useful. Admission to hospital is generally not needed.
The treatment includes lowering the increased intracranial pressure and starting intravenous antibiotics (and meanwhile identifying the causative organism mainly by blood culture studies).
Hyperbaric oxygen therapy (HBO2 or HBOT) is indicated as a primary and adjunct treatment which provides four primary functions.
Firstly, HBOT reduces intracranial pressure. Secondly, high partial pressures of oxygen act as a bactericide and thus inhibits the anaerobic and functionally anaerobic flora common in brain abscess. Third, HBOT optimizes the immune function thus enhancing the host defense mechanisms and fourth, HBOT has been found to be of benefit when brain abscess is concomitant with cranial osteomyleitis.
Secondary functions of HBOT include increased stem cell production and up-regulation of VEGF which aid in the healing and recovery process.
Surgical drainage of the abscess remains part of the standard management of bacterial brain abscesses. The location and treatment of the primary lesion also crucial, as is the removal of any foreign material (bone, dirt, bullets, and so forth).
There are few exceptions to this rule: "Haemophilus influenzae" meningitis is often associated with subdural effusions that are mistaken for subdural empyemas. These effusions resolve with antibiotics and require no surgical treatment. Tuberculosis can produce brain abscesses that look identical to conventional bacterial abscesses on CT imaging. Surgical drainage or aspiration is often necessary to identify "Mycobacterium tuberculosis", but once the diagnosis is made no further surgical intervention is necessary.
CT guided stereotactic aspiration is also indicated in the treatment of brain abscess.
RPA's frequently require surgical intervention. A tonsillectomy approach is typically used to access/drain the abscess, and the outcome is usually positive. Surgery in adults may be done without general anesthesia because there is a risk of abscess rupture during tracheal intubation. This could result in pus from the abscess aspirated into the lungs. In complex cases, an emergency tracheotomy may be required to prevent upper airway obstruction caused by edema in the neck.
High-dose intravenous antibiotics are required in order to control the infection and reduce the size of the abscess prior to surgery.
Chronic retropharyngeal abscess is usually secondary to tuberculosis and the patient needs to be started on anti-tubercular therapy as soon as possible.
Both sex are equally affected
Any age group can develop a parapheryngeal abscess but it is most commonly seen in children and adolescents. Adults who are immunocompromised are also at high risk.
Death occurs in about 10% of cases and people do well about 70% of the time. This is a large improvement from the 1960s due to improved ability to image the head, better neurosurgery and better antibiotics.
Treatment generally consists of surgical drainage, and long-term (6 to 8 weeks) use of antibiotics.
Antibiotics are commonly used as a curing method for pancreatic abscesses although their role remains controversial. Prophylactic antibiotics are normally chosen based on the type of flora and the degree of antibiotic penetration into the abscess. Pancreatic abscesses are more likely to host enteric organisms and pathogens such as "E. coli", "Klebsiella pneumonia", "Enterococcus faecalis", "Staphylococcus aureus", "Pseudomonas aeruginosa", "Proteus mirabilis", and "Streptococcus" species. Medical therapy is usually given to people whose general health status does not allow surgery. On the other hand, antibiotics are not recommended in patients with pancreatitis, unless the presence of an infected abscess has been proved.
Although there have been reported cases of patients who were given medical treatment and survived, primary drainage of the abscess is the main treatment used to cure this condition. Drainage usually involves a surgical procedure. It has been shown that CT-guided drainage brought inferior results than open drainage. Hence, open surgical procedure is preferred to successfully remove the abscess. However, CT-guided drainage is the option treatment for patients who may not tolerate an open procedure. Endoscopic treatment is at the same time a treatment option that increased in popularity over the last years.
In some cases, abscesses may be prevented by draining an existing pseudocyst which is likely to become inflamed. However, in most cases the developing of abscesses cannot be prevented.
Infection can occur from:
- Pharynx: acute and chronic infection of tonsil and adenoids
- Teeth: dental infection occurs from lower last molar tooth
- Ear: bezold abscess and petrositis
- Other space: infection of parotid retropharyngeal space
- External trauma: penetrating injuries of neck, injection of local anaesthetic
RPA is usually caused by a bacterial infection originating from the nasopharynx, tonsils, sinuses, adenoids or middle ear. Any upper respiratory infection (URI) can be a cause. RPA can also result from a direct infection due to penetrating injury or a foreign body. RPA can also be linked to young children who do not have adequate dental care or brush their teeth properly.
An epidural abscess refers to a collection of pus and infectious material located in the epidural space of the central nervous system. Due to its location adjacent to brain or spinal cord, epidural abscesses have the potential to cause weakness, pain, and paralysis.
Spinal epidural abscess (SEA) is a collection of pus or inflammatory granulation between the dura mater and the vertebral column. Currently the annual incidence rate of SEAs is estimated to be 2.5-3 per 10,000 hospital admissions. Incidence of SEA is on the rise, due to factors such as an aging population, increase in use of invasive spinal instrumentation, growing number of patients with risk factors such as diabetes and intravenous drug use. SEAs are more common in posterior than anterior areas, and the most common location is the thoracolumbar area, where epidural space is larger and contains more fat tissue.
SEAs are more common in males, and can occur in all ages, although highest prevalence is during the fifth and seventh decades of life.
It is named after Friedrich Bezold (German otologist, 1842–1908).
In those who have previously had cellulitis, the use of antibiotics may help prevent future episodes. This is recommended by CREST for those who have had more than two episodes.
If ear infections are treated in a reasonable amount of time, the antibiotics will usually cure the infection and prevent its spread. For this reason, mastoiditis is rare in developed countries. Most ear infections occur in infants as the eustachian tubes are not fully developed and don't drain readily.
In all developed countries with up-to-date modern healthcare the primary treatment for mastoiditis is administration of intravenous antibiotics. Initially, broad-spectrum antibiotics are given, such as ceftriaxone. As culture results become available, treatment can be switched to more specific antibiotics directed at the eradication of the recovered aerobic and anaerobic bacteria. Long-term antibiotics may be necessary to completely eradicate the infection. If the condition does not quickly improve with antibiotics, surgical procedures may be performed (while continuing the medication). The most common procedure is a myringotomy, a small incision in the tympanic membrane (eardrum), or the insertion of a tympanostomy tube into the eardrum. These serve to drain the pus from the middle ear, helping to treat the infection. The tube is extruded spontaneously after a few weeks to months, and the incision heals naturally. If there are complications, or the mastoiditis does not respond to the above treatments, it may be necessary to perform a mastoidectomy: a procedure in which a portion of the bone is removed and the infection drained.
With prompt treatment, it is possible to cure mastoiditis. Seeking medical care early is important. However, it is difficult for antibiotics to penetrate to the interior of the mastoid process and so it may not be easy to cure the infection; it also may recur. Mastoiditis has many possible complications, all connected to the infection spreading to surrounding structures. Hearing loss is likely, or inflammation of the labyrinth of the inner ear (labyrinthitis) may occur, producing vertigo and an ear ringing may develop along with the hearing loss, making it more difficult to communicate. The infection may also spread to the facial nerve (cranial nerve VII), causing facial-nerve palsy, producing weakness or paralysis of some muscles of facial expression, on the same side of the face. Other complications include Bezold's abscess, an abscess (a collection of pus surrounded by inflamed tissue) behind the sternocleidomastoid muscle in the neck, or a subperiosteal abscess, between the periosteum and mastoid bone (resulting in the typical appearance of a protruding ear). Serious complications result if the infection spreads to the brain. These include meningitis (inflammation of the protective membranes surrounding the brain), epidural abscess (abscess between the skull and outer membrane of the brain), dural venous thrombophlebitis (inflammation of the venous structures of the brain), or brain abscess.
Treatment for a nasal septal abscess is similar to that of other bacterial infections. Aggressive broad spectrum antibiotics may be used after the infected area has been drained of fluids.
Severe pain in perimastoid region, difficulty of swallowing, sore throat, difficulty in breathing, nuchal rigidity, and fever.
Anal abscesses are rarely treated with a simple course of antibiotics. In almost all cases surgery will need to take place to remove the abscess. Treatment is possible in an emergency room under local anesthesia, but it is highly preferred to be formally admitted to a hospital and to have the surgery performed in an operating room under general anesthesia.
Generally speaking, a fairly small but deep incision is performed close to the root of the abscess. The surgeon will allow the abscess to drain its exudate and attempt to discover any other related lesions in the area. This is one of the most basic types of surgery, and is usually performed in less than thirty minutes by the anal surgical team. Generally, a portion of the exudate is sent for microbiological analysis to determine the type of infecting bacteria. The incision is not closed (stitched), as the damaged tissues must heal from the inside toward the skin over a period of time.
The affected individual is often sent home within twenty-four hours of the surgery, and may be instructed to perform several 'sitz baths' per day, whereby a small basin (which usually fits over a toilet) is filled with warm water (and possibly, salts) and the affected area is soaked for a period of time. Another method of recovery involves the use of surgical packing, which is initially inserted by the surgical team, with redressing generally performed by hospital staff or a District Nurse (however, following the results of several double-blind studies, the effectiveness of surgical packing has come into question). During the week following the surgery, many patients will have some form of antibiotic therapy, along with some form of pain management therapy, consistent with the nature of the abscess.
The patient usually experiences an almost complete relief of the severe pain associated to his/her abscess upon waking from anesthesia; the pain associated with the opening and draining incision during the post-operative period is often mild in comparison.
If left untreated, an anal fistula will almost certainly form, connecting the rectum to the skin. This requires more intensive surgery. Furthermore, any untreated abscess may (and most likely will) continue to expand, eventually becoming a serious systemic infection.
Antibiotics choices depend on regional availability, but a penicillinase-resistant semisynthetic penicillin or a first-generation cephalosporin is currently recommended for cellulitis without abscess. A course of antibiotics is not effective in between 6 and 37% of cases.
When properly diagnosed, the mortality of Lemierre's syndrome is about 4.6%. Since this disease is not well known and often remains undiagnosed, mortality might be much higher.