Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In 1999, Sachdeo and colleagues at the University of Medicine and Dentistry of New Jersey and the Robert Wood Johnson Medical School in New Brunswick reported that 33% of the patients in a group of patients taking topiramate experienced a minimum 50% reduction in seizures (specifically drop attacks and tonic–clonics), compared with 8% in the placebo group. It was also found to be effective as an adjunctive therapy in a review published by Drs. Edith Alva Moncayo and Antonio Ruiz Ruiz in March 2003.
Motte reported in 1997 that lamotrigine was effective in the treatment of LGS, with the most common side effect in the treatment group relative to placebo being colds or viral illnesses. Two years later, it was approved by Health Canada for adjunctive therapy in Lennox Gastaut in adults and children. The United States Food and Drug Administration approved it for that in August 1998.
Felbamate is indicated in the use of LGS in the event that everything else fails, and was found to be superior to placebo in controlling treatment resistant partial seizures and atonic seizures. However, it has been known to cause aplastic anemia and liver toxicity.
No high quality evidence has shown any drug very useful as of 2013. Rufinamide, lamotrigine, topiramate and felbamate may be useful.
Though there is limited evidence, outcomes appear to be relatively poor with a review of outcome studies finding that two thirds of PNES patients continue to experience episodes and more than half are dependent on social security at three-year followup. This outcome data was obtained in a referral-based academic epilepsy center and loss to follow-up was considerable; the authors point out ways in which this may have biased their outcome data. Outcome was shown to be better in patients with higher IQ, social status, greater educational attainments, younger age of onset and diagnosis, attacks with less dramatic features, and fewer additional somatoform complaints.
Deep brain stimulation of the anterior nuclei of the thalamus is approved for DRE in some countries in Europe, but has been and continues to only be used in a very few patients. After 5 years of DBS a seizure reduction of 69% and a 50%-responder rate of 68% was reported in a randomized-double blinded trial. The rate of serious device related events was 34% in this study.
Responsive neurostimulation (RNS) is approved for DRE in the USA and involves stimulation directly to 1 or 2 seizure foci when abnormal electrocorticographic activity is detected by the devices software. After 2 years of RNS a seizure reduction of 53% was reported in a randomized-double blinded trial as well as a rate of serious device related events of 2.5%.
Transcutaneous vagus nerve stimulation (tVNS) is approved for DRE in some European countries and involves externally stimulating the auricular branch of the vagus nerve in the ear. tVNS failed to demonstrate efficacy in a first randomized-double blinded trial: responder rates did not differ between active and control groups potentially indicating a placebo effect behind the 34% seizure reduction seen in the patients who completed the full follow-up period.
A modified Atkins diet describes the long term practice of the first phase of the popular Atkins diet the so-called induction phase to reduce seizures through ketosis. In this diet the fat content of the nutrition is slightly lower than in the ketogenic diet at around 60%, the protein content is around 30% and the carbohydrate content is around 10% rendering the diet less restrictive and more compatible with the daily life compared to the ketogenic diet. Several studies show that the modified Atkins diet produces a similar or slightly lower seizure reduction to the ketogenic diet. Some physicians, especially in the USA, recommend the modified Atkins diet because they assume that patients will adhere to it on the long-term because it is more compatible with daily life and the meals are more enjoyable. It has also been concluded in another study that the diet is well tolerated and effective in hard to treat childhood epilepsy.
Given the benign nature of the condition and the low seizure frequency, treatment is often unnecessary. If treatment is warranted or preferred by the child and his or her family, antiepileptic drugs can usually control the seizures easily. Carbamazepine is the most frequently used first-line drug, but many other antiepileptic drugs, including valproate, phenytoin, gabapentin, levetiracetam and sultiame have been found effective as well. Bedtime dosing is advised by some. Treatment can be short and drugs can almost certainly be discontinued after two years without seizures and with normal EEG findings, perhaps even earlier.
Parental education about Rolandic epilepsy is the cornerstone of correct management. The traumatizing, sometimes long-lasting effect on parents is significant.
It is unclear if there are any benefits to clobazam over other seizure medications.
Unfortunately, there is no real way to prevent against vertiginous episodes out of the means of managing the disease. As head trauma is a major cause for vertiginous epilepsy, protecting the head from injury is an easy way to avoid possible onset of these seizures. With recent advances in science it is also possible for an individual to receive genetic screening, but this only tells if the subject is predisposed to developing the condition and will not aid in preventing the disease.
There is a range of ways to manage vertiginous epilepsy depending on the severity of the seizures. For simple partial seizures medical treatment is not always necessary. To the comfort of the patient, someone ailed with this disease may be able to lead a relatively normal life with vertiginous seizures. If, however, the seizures become too much to handle, antiepileptic medication can be administered as the first line of treatment. There are several different types of medication on the market to deter epileptic episodes but there is no support to show that one medication is more effective than another. In fact, research has shown that simple partial seizures do not usually respond well to medication, leaving the patient to self-manage their symptoms. A third option for treatment, used only in extreme cases when seizure symptoms disrupt daily life, is surgery wherein the surgeon will remove the epileptic region.
There have been early and consistent strategies for measurement to better understand vertiginous epilepsy including caloric reflex test, posture and gait, or rotational experimentation.
In Japan, Kaga et al prepared a longitudinal study of rotation tests comparing congenital deafness and children with delayed acquisition of motor system skills. They were able to demonstrate the development of post-rotation nystagmus response from the frequency of beat and duration period from birth to six years to compare to adult values. Overall, the study demonstrated that some infants from the deaf population had impaired vestibular responses related to head control and walking age. A side interpretation included the evaluation of the vestibular system in reference to matching data with age.
Research in this area of medicine is limited due to its lacking need for urgent attention. But, the American Hearing Research Foundation (AHRF) conducts studies in which they hope to make new discoveries to help advance treatment of the disease and possibly one day prevent vertiginous seizures altogether.
The mainstay treatment of epilepsy is anticonvulsant medications, possibly for the person's entire life. The choice of anticonvulsant is based on seizure type, epilepsy syndrome, other medications used, other health problems, and the person's age and lifestyle. A single medication is recommended initially; if this is not effective, switching to a single other medication is recommended. Two medications at once is recommended only if a single medication does not work. In about half, the first agent is effective; a second single agent helps in about 13% and a third or two agents at the same time may help an additional 4%. About 30% of people continue to have seizures despite anticonvulsant treatment.
There are a number of medications available including phenytoin, carbamazepine and valproate. Low-quality evidence suggests that phenytoin, carbamazepine, and valproate may be equally effective in both focal and generalized seizures. Controlled release carbamazepine appears to work as well as immediate release carbamazepine, and may have fewer side effects. In the United Kingdom, carbamazepine or lamotrigine are recommended as first-line treatment for focal seizures, with levetiracetam and valproate as second-line due to issues of cost and side effects. Valproate is recommended first-line for generalized seizures with lamotrigine being second-line. In those with absence seizures, ethosuximide or valproate are recommended; valproate is particularly effective in myoclonic seizures and tonic or atonic seizures. If seizures are well-controlled on a particular treatment, it is not usually necessary to routinely check the medication levels in the blood.
The least expensive anticonvulsant is phenobarbital at around $5 USD a year. The World Health Organization gives it a first-line recommendation in the developing world and it is commonly used there. Access however may be difficult as some countries label it as a controlled drug.
Adverse effects from medications are reported in 10 to 90% of people, depending on how and from whom the data is collected. Most adverse effects are dose-related and mild. Some examples include mood changes, sleepiness, or an unsteadiness in gait. Certain medications have side effects that are not related to dose such as rashes, liver toxicity, or suppression of the bone marrow. Up to a quarter of people stop treatment due to adverse effects. Some medications are associated with birth defects when used in pregnancy. Many of the common used medications, such as valproate, phenytoin, carbamazepine, phenobarbitol, and gabapentin have been reported to cause increased risk of birth defects, especially when used during the first trimester. Despite this, treatment is often continued once effective, because the risk of untreated epilepsy is believed to be greater than the risk of the medications. Among the antiepileptic medications, levetiracetam and lamotrigine seem to carry the lowest risk of causing birth defects.
Slowly stopping medications may be reasonable in some people who do not have a seizure for two to four years; however, around a third of people have a recurrence, most often during the first six months. Stopping is possible in about 70% of children and 60% of adults.
Like other forms of epilepsy, nocturnal epilepsy can be treated with anti-convulsants.
Despite the effectiveness of anti-convulsants in people who suffer from nocturnal epilepsy, the drugs are shown to disrupt a person's sleeping structure. This may cause concern in people who suffer specifically from nocturnal epilepsy because undisrupted sleep is important for these people, as it lowers the likeliness of epileptic symptoms to arise.
One particular study by V. Bradley and D. O'Neill analysed the different forms of epilepsy, including nocturnal epilepsy and its relationship with sleep. They found that some patients only experienced epileptic symptoms while they are asleep (nocturnal epilepsy), and that maintaining good sleep helped in reducing epileptic symptoms. Another study determined that anti-convulsant medications can minimize epilepsy not just in people who are awake, but also in people who are asleep. However, some of these anti-convulsant medications did also have adverse effects on subjects' sleeping structures, which can exacerbate epileptic symptoms in people who suffer from nocturnal epilepsy.
To minimize epileptic seizures in these people, it is important to find an anti-convulsant medication that does not disrupt a person's sleeping structure. The anti-convulsant medications that were tested to meet this criteria are: phenobarbital, phenytoin, carbamazepine, valproate, ethosuximide, felbamate, gabapentin, lamotrigine, topiramate, vigabatrin, tiagabine, levetiracetam, zonisamide, and oxcarbazepine. Oxcarbazepine is shown to have the least amount of adverse effects on sleep. Another study shows that it enhances slow wave-sleep and sleep continuity in patients with epilepsy.
Anti-epileptic drugs are normally used to combat ADNFLE. These drugs are discussed in the main epilepsy article.
The prognosis of ICOE-G is unclear, although available data indicate that remission occurs in 50–60% of patients within 2–4 years of onset. Seizures show a dramatically good response to carbamazepine in more than 90% of patients. However, 40–50% of patients may continue to have visual seizures and infrequent secondarily generalized convulsions, particularly if they have not been appropriately treated with antiepileptic drugs.
The ketogenic diet mimics some of the effects of starvation, in which the body first uses up glucose and glycogen before burning stored body fat. In the absence of glucose, the body produces ketones, a chemical by-product of fat metabolism that has been known to inhibit seizures.
A modified version of a popular low-carbohydrate, high-fat diet which is less restrictive than the ketogenic diet.
The low glycemic index treatment (LGIT) is a new dietary therapy currently being studied to treat epilepsy. LGIT attempts to reproduce the positive effects of the ketogenic diet. The treatment allows a more generous intake of carbohydrates than the ketogenic diet, but is restricted to foods that have a low glycemic index, meaning foods that have a relatively low impact on blood-glucose levels.
These foods include meats, cheeses, and most vegetables because these foods have a relatively low glycemic index. Foods do not have to be weighed, but instead careful attention must be paid to portion size and balancing the intake of carbohydrates throughout the day with adequate amounts of fats and proteins.
Patients with ICOE-G need prophylactic treatment mainly with carbamazepine or other antiepileptic drugs licensed for focal seizures. A slow reduction in the dose of medication 2 or 3 years after the last visual or other minor or major seizure should be advised, but if visual seizures reappear, treatment should be restored.
The treatment for seizures may include antiepileptic medications, diet, and vagus nerve stimulator.
A ketogenic diet (high-fat, low-carbohydrate, adequate-protein) appears to decrease the number of seizures and eliminate seizures in some, however further research is necessary. It is a reasonable option in those who have epilepsy that is not improved with medications and for whom surgery is not an option. About 10% stay on the diet for a few years due to issues of effectiveness and tolerability. Side effects include stomach and intestinal problems in 30%, and there are long-term concerns about heart disease. Less radical diets are easier to tolerate and may be effective. It is unclear why this diet works. Exercise has been proposed as possibly useful for preventing seizures with some data to support this claim.
In people with coeliac disease or non-celiac gluten sensitivity and occipital calcifications, a gluten-free diet may decrease the frequency of seizures.
There are several different ways to treat frontal lobe epileptic seizures, however, the most common form of treatment is through the use of anticonvulsant medications that help to prevent seizures from occurring. In some cases, however, when medications are ineffective, a neurologist may choose to operate on the patient in order to remove the focal area of the brain in which the seizures are occurring. Other treatments that can be administered to aid in reducing the occurrence of seizures include the implementation of a specific, regimented diet and/or the implantation of a vagus nerve stimulator.
Continuous prophylactic antiepileptic drug (AED) treatment may not be needed particularly for children with only 1-2 or brief seizures. This is probably best reserved for children whose seizures are unusually frequent, prolonged, distressing, or otherwise significantly interfering with the child’s life. There is no evidence of superiority of monotherapy with any particular common AED.
Autonomic status epilepticus in the acute stage needs thorough evaluation for proper diagnosis and assessment of the neurologic/autonomic state of the child. "Rescue" benzodiazepines are commonly used to terminate it. Aggressive treatment should be avoided because of the risk of iatrogenic complications, including cardiovascular arrest. There is some concern that intravenous lorazepam and/or diazepam may precipitate cardiovascular arrest. Early parental treatment is more effective than late emergency treatment. Buccal midazolam is probably the first choice medication for out of hospital termination of autonomic status epilepticus which should be administered as soon as the child shows evidence of onset of its habitual autonomic seizures.
Parental education about Panayiotopoulos syndrome is the cornerstone of correct management. The traumatizing, sometimes long-lasting effect on parents is significant particularly because autonomic seizures may last for many hours compounded by physicians’ uncertainty regarding diagnosis, management, and prognosis.
Anticonvulsants are the most successful medication in reducing and preventing seizures from reoccurring. The goal of these medications in being able to reduce the reoccurrence of seizures is to be able to limit the amount of rapid and extensive firing of neurons so that a focal region of neurons cannot become over-activated thereby initiating a seizure. Although anticonvulsants are able to reduce the amount of seizures that occur in the brain, no medication has been discovered to date that is able to prevent the development of epilepsy following a head injury. There are a wide range of anticonvulsants that have both different modes of action and different abilities in preventing certain types of seizures. Some of the anticonvulsants that are prescribed to patients today include: Carbamazepine (Tegretol), Phenytoin (Dilantin Kapseals), Gabapentin (Neurontin), Levetiracetam (Keppra), Lamotrigine (Lamictal), Topiramate (Topamax), Tiagabine (Gabitril), Zonisamide (Zonegran) and Pregabalin (Lyrica).
The prognosis for Rolandic seizures is invariably excellent, with probably less than 2% risk of developing absence seizures and less often GTCS in adult life.
Remission usually occurs within 2–4 years from onset and before the age of 16 years. The total number of seizures is low, the majority of patients having fewer than 10 seizures; 10–20% have just a single seizure. About 10–20% may have frequent seizures, but these also remit with age.
Children with Rolandic seizures may develop usually mild and reversible linguistic, cognitive and behavioural abnormalities during the active phase of the disease. These may be worse in children with onset of seizures before 8 years of age, high rate of occurrence and multifocal EEG spikes.
The development, social adaptation and occupations of adults with a previous history of Rolandic seizures were found normal.
Many anticonvulsant oral medications are available for the management of temporal lobe seizures. Most anticonvulsants function by decreasing the excitation of neurons, for example, by blocking fast or slow sodium channels or by modulating calcium channels; or by enhancing the inhibition of neurons, for example by potentiating the effects of inhibitory neurotransmitters like GABA.
In TLE, the most commonly used older medications are phenytoin, carbamazepine, primidone, valproate, and phenobarbital. Newer drugs, such as gabapentin, topiramate, levetiracetam, lamotrigine, pregabalin, tiagabine, lacosamide, and zonisamide promise similar effectiveness, with possibly fewer side-effects. Felbamate and vigabatrin are newer, but can have serious adverse effects so they are not considered as first-line treatments.
Up to one third of patients with medial temporal lobe epilepsy will not have adequate seizure control with medication alone. For patients with medial TLE whose seizures remain uncontrolled after trials of several types of anticonvulsants (that is, the epilepsy is "intractable"), surgical excision of the affected temporal lobe may be considered.
Where surgery is not recommended, further management options include new (including experimental) anticonvulsants, and vagus nerve stimulation. The ketogenic diet is also recommended for children, and some adults. Other options include brain cortex responsive neural stimulators, deep brain stimulation, stereotactic radiosurgery, such as the gamma knife, and laser ablation.
Panayiotopoulos syndrome probably affects 13% of children aged 3 to 6 years who have had 1 or more afebrile seizures and 6% of such children in the 1- to 15-year age group. All races and both sexes are affected.
There are a number of recommended steps to explain to people their diagnosis in a sensitive and open manner. A negative diagnosis experience may cause frustration and could cause a person to reject any further attempts at treatment. Ten points recommended to explain the diagnosis to the person and their caregivers are:
1. Reasons for concluding they do not have epilepsy
2. What they do have (describe dissociation)
3. Emphasise they are not suspected of "putting on" the attacks
4. They are not 'mad'
5. Triggering "stresses" may not be immediately apparent.
6. Relevance of aetiological factors in their case
7. Maintaining factors
8. May improve after correct diagnosis
9. Caution that anticonvulsant drug withdrawal should be gradual
10. Describe psychological treatment
Psychotherapy is the most frequently used treatment, which might include cognitive behavioral therapy, insight-orientated therapy, and/or group work. There is some tentative evidence supporting selective serotonin reuptake inhibitor antidepressants.
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is an epileptic disorder that causes frequent violent seizures during sleep. These seizures often involve complex motor movements, such as hand clenching, arm raising/lowering, and knee bending. Vocalizations such as shouting, moaning, or crying are also common. ADNFLE is often misdiagnosed as nightmares. Attacks often occur in clusters and typically first manifest in childhood. There are four known loci for ADNFLE, three with known causative genes. These genes, "CHRNA4", "CHRNB2", and "CHRNA2", encode various nicotinic acetylcholine receptor α and β subunits.