Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Fibrosarcoma occurs most frequently in the mouth in dogs . The tumor is locally invasive, and often recurs following surgery . Radiation therapy and chemotherapy are also used in treatment. Fibrosarcoma is also a rare bone tumor in dogs.
In cats, fibrosarcoma occurs on the skin. It is also the most common vaccine-associated sarcoma. In 2014, Merial launched Oncept IL-2 in Europe for the management of such feline fibrosarcomas.
Dr. Sidney Farber, founder of Dana-Farber Cancer Institute, and his colleagues achieved the first remissions in Wilms tumor in the 1950s. By employing the antibiotic actinomycin D in addition to surgery and radiation therapy, they boosted cure rates from 40 to 89 percent.
Treatment of rhabdomyosarcoma is a multidisciplinary practice involving the use of surgery, chemotherapy, radiation, and possibly immunotherapy. Surgery is generally the first step in a combined therapeutic approach. Resectability varies depending on tumor site, and RMS often presents in sites that don't allow for full surgical resection without significant morbidity and loss of function. Less than 20% of RMS tumors are fully resected with negative margins. Fortunately, rhabdomyosarcomas are highly chemosensitive, with approximately 80% of cases responding to chemotherapy. In fact, multi-agent chemotherapy is indicated for all patients with rhabdomyosarcoma. Before the use of adjuvant and neoadjuvant therapy involving chemotherapeutic agents, treatment solely by surgical means had a survival rate of <20%. Modern survival rates with adjuvant therapy are approximately 60–70%.
There are two main methods of chemotherapy treatment for RMS. There is the VAC regimen, consisting of vincristin, actinomyocin D, and cyclophosphamide, and the IVA regimen, consisting of ifosfamide, vincristin, and actinomyocin D. These drugs are administered in 9–15 cycles depending on the staging of the disease and other therapies used. Other drug and therapy combinations may also show additional benefit. Addition of doxorubicin and cisplatin to the VAC regimen was shown to increase survival rates of patients with alveolar-type, early-stage RMS in IRS study III, and this same addition improved survival rates and doubled bladder salvage rates in patients with stage III RMS of the bladder.
Radiation therapy, which kill cancer cells with focused doses of radiation, is often indicated in the treatment of rhabdomyosarcoma, and the exclusion of this treatment from disease management has been shown to increase recurrence rates. Radiation therapy is used when resecting the entirety of the tumor would involve disfigurement or loss of important organs (eye, bladder, etc.). Generally, in any case where a lack of complete resection is suspected, radiation therapy is indicated. Administration is usually following 6–12 weeks of chemotherapy if tumor cells are still present. The exception to this schedule is the presence of parameningeal tumors that have invaded the brain, spinal cord, or skull. In these cases radiation treatment is started immediately. In some cases, special radiation treatment may be required. Brachytherapy, or the placement of small, radioactive “seeds” directly inside the tumor or cancer site, is often indicated in children with tumors of sensitive areas such as the testicles, bladder, or vagina. This reduces scattering and the degree of late toxicity following dosing. Radiation therapy is more often indicated in higher stage classifications.
Immunotherapy is a more recent treatment modality that is still in development. This method involves recruiting and training the patient's immune system to target the cancer cells. This can be accomplished through administering small molecules designed to pull immune cells towards the tumors, taking immune cells pulled from the patient and training to attack tumors through presentation with tumor antigen, or other experimental methods. A specific example here would be presenting some of the patient's dendritic cells, which direct the immune system to foreign cells, with the PAX3-FKHR fusion protein in order to focus the patient's immune system to the malignant RMS cells. All cancers, including rhabdomyosarcoma, could potentially benefit from this new, immune-based approach.
Determination of treatment options depends on certain factors, some of which affect internal organs and others that affect personal appearance. When determining treatment, oncologists consider the initial location the tumor, the likelihood of body function deterioration, the effect on appearance, and the patient's potential response to chemotherapy and radiation. Surgery is the least successful of the treatment options; the tumor cannot be completely removed because it develops within the cells. Chemotherapy follows surgery to shrink or eliminate the remaining cancer cells.
Stem cell research under clinical trial shows promise to replace lost cells.
The aggressiveness of this cancer requires the response of a large team of specialists, possibly including a pediatric surgeon, oncologist, hematologist, specialty nurse, and rehabilitation specialists. Social workers and psychologists aid recovery by building a system of emotional support. Treatment is harsh on the body and may result in side effects including mood swings, learning difficulties, memory loss, physical deformations or restrictions, and potential risk of secondary cancers.
Because of its rarity, there have been no randomized clinical trials of treatment of GCCL, and all information available derives from small retrospective institutional series or multicenter metadata.
Unlike its differentiated counterparts, anaplastic thyroid cancer is highly unlikely to be curable either by surgery or by any other treatment modality, and is in fact usually unresectable due to its high propensity for invading surrounding tissues.
Palliative treatment consists of radiation therapy usually combined with chemotherapy.
New drugs, such as fosbretabulin (a type of combretastatin), bortezomib and TNF-Related Apoptosis Induced Ligand (TRAIL), are however being under investigation "in vitro" and in human clinical studies. Based on encouraging Phase I and II clinical trial results with fosbretabulin, a type of drug that selectively destroys tumor blood vessels, a large, multi-national clinical trial is being undertaken to determine whether the drug can extend the survival of patients with ATC.
Childhood rhabdomyosarcoma has been fatal. Recovery rates have increased by 50 percent since 1975. In children five years of age or younger survival rates are up to 65 percent. In adolescents younger than 15 years old, the survival rate has increased up to 30 percent.
The role of external beam radiotherapy (EBRT) in thyroid cancer remains controversial and there is no level I evidence to recommend its use in the setting of differentiated thyroid cancers such as papillary and follicular carcinomas. Anaplastic thyroid carcinomas, however, are histologically distinct from differentiated thyroid cancers and due to the highly aggressive nature of ATC aggressive postoperative radiation and chemotherapy are typically recommended.
The National Comprehensive Cancer Network Clinical Practice Guidelines currently recommend that postoperative radiation and chemotherapy be strongly considered. No published randomised controlled trials have examined the addition of EBRT to standard treatment, namely surgery. Radioactive iodine is typically ineffective in the management of ATC as it is not an iodine-avid cancer.
Imbalances in age, sex, completeness of surgical excision, histological type and stage, between patients receiving and not receiving EBRT, confound retrospective studies. Variability also exists between treatment and non-treatment groups in the use of radio-iodine and post-treatment thyroid stimulating hormone (TSH) suppression and treatment techniques between and within retrospective studies.
Some recent studies have indicated that EBRT may be promising, though the number of patients studies has been small.
Clinical trials for investigational treatments are often considered by healthcare professionals and patients as first-line treatment.
A very large number of clinical trials have been conducted in "pure" SCLC over the past several decades. As a result, evidence-based sets of guidelines for treating monophasic SCLC are available. While the current set of SCLC treatment guidelines recommend that c-SCLC be treated in the same manner as "pure" SCLC, they also note that the evidence supporting their recommendation is quite weak. It is likely, then, that the optimum treatment for patients with c-SCLC remains unknown.
The current generally accepted standard of care for all forms of SCLC is concurrent chemotherapy (CT) and thoracic radiation therapy (TRT) in LD, and CT only in ED. For complete responders (patients in whom all evidence of disease disappears), prophylactic cranial irradiation (PCI) is also given. TRT serves to increase the probability of total eradication of residual locoregional disease, while PCI aims to eliminate any micrometastases to the brain.
Surgery is not often considered as a treatment option in SCLC (including c-SCLC) due to the high probability of distant metastases at the time of diagnosis. This paradigm was driven by early studies showing that the administration of systemic therapies resulted in improved survival as compared to patients undergoing surgical resection. Recent studies, however, have suggested that surgery for highly selected, very early-stage c-SCLC patients may indeed improve outcomes. Other experts recommend resection for residual masses of NSCLC components after complete local tumor response to chemotherapy and/or radiotherapy in c-SCLC.
Although other combinations of drugs have occasionally been shown to be noninferior at various endpoints and in some subgroups of patients, the combination of cisplatin or carboplatin plus etoposide or irinotecan are considered comparable first-line regimens for SCLC. For patients who do not respond to first line therapy, or who relapse after complete remission, topotecan is the only agent which has been definitively shown to offer increased survival over best supportive care (BSC), although in Japan amirubicin is considered effective as salvage therapy.
Importantly, c-SCLC is usually much more resistant to CT and RT than "pure" SCLC. While the mechanisms for this increased resistance of c-SCLC to conventional cytotoxic treatments highly active in "pure" SCLC remain mostly unknown, recent studies suggest that the earlier in its biological history that a c-SCLC is treated, the more likely it is to resemble "pure" SCLC in its response to CT and RT.
The overall 5-year survival is estimated to be approximately 90%, but for individuals the prognosis is highly dependent on individual staging and treatment. Early removal tends to promote positive outcomes.
Tumor-specific loss-of-heterozygosity (LOH) for chromosomes 1p and 16q identifies a subset of Wilms tumor patients who have a significantly increased risk of relapse and death. LOH for these chromosomal regions can now be used as an independent prognostic factor together with disease stage to target intensity of treatment to risk of treatment failure. Genome-wide copy number and LOH status can be assessed with virtual karyotyping of tumor cells (fresh or paraffin-embedded).
Statistics may sometimes show more favorable outcomes for more aggressive stages than for less aggressive stages, which may be caused by more aggressive treatment and/or random variability in the study groups. Also, a stage V tumor is not necessarily worse than a stage IV tumor.
Giant-cell lung cancers have long been considered to be exceptionally aggressive malignancies that grow very rapidly and have a very poor prognosis.
Many small series have suggested that the prognosis of lung tumors with giant cells is worse than that of most other forms of non-small-cell lung cancer (NSCLC), including squamous cell carcinoma, and spindle cell carcinoma.
The overall five-year survival rate in GCCL varies between studies but is generally considered to be very low. The (US) Armed Forces Institute of Pathology has reported a figure of 10%, and in a study examining over 150,000 lung cancer cases, a figure of 11.8% was given. However, in the latter report the 11.8% figure was based on data that included spindle cell carcinoma, a variant which is generally considered to have a less dismal prognosis than GCCL. Therefore, the likely survival of "pure" GCCL is probably lower than the stated figure.
In the large 1995 database review by Travis and colleagues, giant-cell carcinoma has the third-worst prognosis among 18 histological forms of lung cancer. (Only small-cell carcinoma and large-cell carcinoma had shorter average survival.)
Most GCCL have already grown and invaded locally and/or regionally, and/or have already metastasized distantly, and are inoperable, at the time of diagnosis.
A malignant mixed tumor (also known as a "Malignant chondroid syringoma") is a cutaneous condition characterized by a tumor that favors the trunk and extremities.
In most series, LCLC's comprise between 5% and 10% of all lung cancers.
According to the Nurses' Health Study, the risk of large cell lung carcinoma increases with a previous history of tobacco smoking, with a previous smoking duration of 30 to 40 years giving a relative risk of approximately 2.3 compared to never-smokers, and a duration of more than 40 years giving a relative risk of approximately 3.6.
Another study concluded that cigarette smoking is the predominant cause of large cell lung cancer. It estimated that the odds ratio associated with smoking two or more packs/day for current smokers is 37.0 in men and 72.9 in women.
Large-cell carcinoma (LCC) is a heterogeneous group of undifferentiated malignant neoplasms that lack the cytologic and architectural features of small cell carcinoma and glandular or squamous differentiation. LCC is categorized as a type of NSCLC (Non-Small Cell Carcinoma) which originates from epithelial cells of the lung.
In recent years, several new types of "molecularly targeted" agents have been developed and used to treat lung cancer. While a very large number of agents targeting various molecular pathways are being developed and tested, the main classes and agents that are now being used in lung cancer treatment include:
- Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs):
- Erlotinib (Tarceva)
- Gefitinib (Iressa)
- Cetuximab (Erbitux)
- Inhibitors of vascular endothelial growth factor (VEGF)
- Bevacizumab (Avastin)
- Inhibitors of folate metabolism
- Pemetrexed (Alimta)
To date, most clinical trials of targeted agents, alone and in combination with previously tested treatment regimens, have either been ineffective in SCLC or no more effective than standard platinum-based doublets. While there have been no randomized clinical trials of targeted agents in c-SCLC, some small case series suggest that some may be useful in c-SCLC. Many targeted agents appear more active in certain NSCLC variants. Given that c-SCLC contains components of NSCLC, and that the chemoradioresistance of NSCLC components impact the effectiveness of c-SCLC treatment, these agents may permit the design of more rational treatment regimens for c-SCLC.
EGFR-TKI's have been found to be active against variants exhibiting certain mutations in the EGFR gene. While EGFR mutations are very rare (<5%) in "pure" SCLC, they are considerably more common (about 15–20%) in c-SCLC, particularly in non-smoking females whose c-SCLC tumors contain an adenocarcinoma component. These patients are much more likely to have classical EGFR mutations in the small cell component of their tumors as well, and their tumors seem to be more likely to respond to treatment with EGFR-TKI's. EGFR-targeted agents appear particularly effective in papillary adenocarcinoma, non-mucinous bronchioloalveolar carcinoma, and adenocarcinoma with mixed subtypes.
The role of VEGF inhibition and bevacizumab in treating SCLC remains unknown. Some studies suggest it may, when combined with other agents, improve some measures of survival in SCLC patients and in some non-squamous cell variants of NSCLC.
Pemetrexed has been shown to improve survival in non-squamous cell NSCLC, and is the first drug to reveal differential survival benefit in large cell lung carcinoma.
Interestingly, c-SCLC appear to express female hormone (i.e. estrogen and/or progesterone) receptors in a high (50–67%) proportion of cases, similar to breast carcinomas. However, it is at present unknown whether blockade of these receptors affects the growth of c-SCLC.
Carcinoma is a type of cancer that develops from epithelial cells. Specifically, a carcinoma is a cancer that begins in a tissue that lines the inner or outer surfaces of the body, and that arises from cells originating in the endodermal, mesodermal and ectodermal germ layer during embryogenesis.
Carcinomas occur when the DNA of a cell is damaged or altered and the cell begins to grow uncontrollably and become malignant. It is from the Greek καρκίνωμα 'karkinoma' meaning sore, ulcer, or cancer, itself derived from "karkinos" 'crab'.
A Mixed tumor is a tumor that derives from multiple tissue types.
For example, a "Chondroid syringoma" is a cutaneous condition characterized histologically by nests of cuboidal or polygonal epithelial cells in the dermis.
There are two types: one derived from a single germ cell layer that differentiates into more than one cell type, and one derived from more than one germ cell layer (totipotent cells).
Recent focus has been to reduce therapy for low and intermediate risk neuroblastoma while maintaining survival rates at 90%. A study of 467 intermediate risk patients enrolled in A3961 from 1997 to 2005 confirmed the hypothesis that therapy could be successfully reduced for this risk group. Those with favorable characteristics (tumor grade and response) received four cycles of chemotherapy, and those with unfavorable characteristics received eight cycles, with three-year event free survival and overall survival stable at 90% for the entire cohort. Future plans are to intensify treatment for those patients with aberration of 1p36 or 11q23 chromosomes as well as for those who lack early response to treatment.
By contrast, focus the past 20 years or more has been to intensify treatment for high-risk neuroblastoma. Chemotherapy induction variations, timing of surgery, stem cell transplant regimens, various delivery schemes for radiation, and use of monoclonal antibodies and retinoids to treat minimal residual disease continue to be examined. Recent phase III clinical trials with randomization have been carried out to answer these questions to improve survival of high-risk disease:
Treatment depends on the location of the disease and the aggressiveness of the tumors. Because chondrosarcomas are rare, they are treated at specialist hospitals with Sarcoma Centers.
Surgery is the main form of treatment for chondrosarcoma. Musculoskeletal tumor specialists or orthopedic oncologists are usually chosen to treat chondrosarcoma, unless it is located in the skull, spine, or chest cavity, in which case, a neurosurgeon or thoracic surgeon experienced with sarcomas is chosen. Often, a limb-sparing operation can be performed, but in some cases amputation is unavoidable. Amputation of the arm, leg, jaw, or half of the pelvis (called a hemipelvectomy) may be necessary in some cases.
There are two kinds of hemipelvectomy - internal and external.
- External hemipelvectomy - is removal of that half of the pelvis with the amputation of the leg. It is also called the hindquarter amputation.
- Internal hemipelvectomy - is removal of that half of the pelvis, but the leg is left intact.
Amputation at the hip is called hip disarticulation and amputees who have had this amputation are also called hip disartics.
Chemotherapy or traditional radiotherapy are not very effective for most chondrosarcomas, although proton therapy is showing promise with local tumor control at over 80%.
Complete surgical ablation is the most effective treatment, but sometimes this is difficult. Proton therapy radiation can be useful in awkward locations to make surgery more effective.
Recent studies have shown that induction of apoptosis in high-grade chondrosarcoma, both directly and by enhancement of response to chemotherapy and radiation, is a valid therapeutic strategy.
While cancer is generally considered a disease of old age, children can also develop cancer. In contrast to adults, carcinomas are exceptionally rare in children..
The two biggest risk factors for ovarian carcinoma are age and family history.
NSCLCs are usually "not" very sensitive to chemotherapy and/or radiation, so surgery remains the treatment of choice if patients are diagnosed at an early stage. If patients have small, but inoperable tumors, they may undergo highly targeted, high intensity radiation therapy. New methods of giving radiation treatment allow doctors to be more accurate in treating lung cancers. This means less radiation affects nearby healthy tissues. New methods include Cyberknife and stereotactic body radiation therapy(SBRT). Certain patients deemed to be higher risk may also receive adjuvant (ancillary) chemotherapy after initial surgery or radiation therapy. There are a number of possible chemotherapy agents which can be selected however most will involve the platinum-based chemotherapy drug called cisplatin.
Other treatments include percutaneous ablation and chemoembolization. The most widely used ablation techniques for lung cancer are radiofrequency ablation, cryoablation, and microwave ablation. Ablation may be an option for patients whose tumors are near the outer edge of the lungs. Nodules less than 1 cm from the trachea, main bronchi, oesophagus and central vessels should be excluded from RFA given high risk of complications and frequent incomplete ablation. Additionally, lesions greater than 5 cm should be excluded and lesions 3 to 5 cm should be considered with caution given high risk of recurrence. As a minimally invasive procedure, it can be a safer alternative for patients who are poor candidates for surgery due to co-morbidities or limited lung function. A study comparing thermal ablation to sublobar resection as treatment for early stage NSCLC in older patients found no difference in overall survival of the patients. It is possible that RFA followed by radiation therapy has a survival benefit due to synergysm of the two mechanisms of cell destruction.
A wide variety of chemotherapies options exist for used in advanced (metastatic) NSCLC. These agents include both traditional chemotherapies like cisplatin which indiscriminately target all rapidly dividing cells as well as newer targeted agents which are more tailored to specific genetic aberrations found within a patient's tumor. At present there are two genetic markers which are routinely profiled in NSCLC tumors to guide further treatment decision making: mutations within EGFR and Anaplastic Lymphoma Kinase. There are also a number of additional genetic markers which are known to be mutated within NSCLC and may impact treatment in the future, including BRAF (gene), HER2/neu and KRAS.
Thermal ablations i.e. radiofrequency ablation, cryoablation, microwave ablation are appropriate for palliative treatment of tumor-related symptoms or recurrences within treatment fields. Patients with severe pulmonary fibrosis and severe emphysema with a life expectancy <1 year should be considered poor candidates for this treatment.
Chemotherapy with topotecan and cyclophosphamide is frequently used in refractory setting and after relapse.
Mammary tumors are the third most common neoplasia in cats, following lymphoid and skin cancers. The incidence of mammary tumors in cats is reduced by 91 percent in cats spayed prior to six months of age and by 86 percent in cats spayed prior to one year, according to one study. Siamese cats and Japanese breeds seem to have increased risk, and obesity also appears to be a factor in tumor development. Malignant tumors make up 80 to 96 percent of mammary tumors in cats, almost all adenocarcinomas. Male cats may also develop mammary adenocarcinoma, albeit rarely, and the clinical course is similar to female cats. As in dogs, tumor size is an important prognostic factor, although for tumors less than three centimeters the individual size is less predictive. According to one study, cats with tumors less than three cm had an average survival time of 21 months, and cats with tumors greater than three cm had an average survival of 12 months. About 10 percent of cat mammary tumors have estrogen receptors, so spaying at the time of surgery has little effect on recurrence or survival time. Metastasis tends to be to the lungs and lymph nodes, and rarely to bone. Diagnosis and treatment is similar to the dog. There is a better prognosis with bilateral radical surgery (removing the both mammary chains) than with more conservative surgery. Doxorubicin has shown some promise in treatment.
Even after surgery, an oligoastrocytoma will often recur. The treatment for a recurring brain tumor may include surgical resection, chemo and radiation therapy. Survival time of this brain tumor varies - younger age and low-grade initial diagnosis are factors in improved survival time.