Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Management of AIS is currently limited to symptomatic management; no method is currently available to correct the malfunctioning androgen receptor proteins produced by "AR" gene mutations. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, genetic counseling, and psychological counseling.
Hormone replacement therapy with estrogen may be used to treat symptoms of hypoestrogenism in females with the condition. There are currently no known treatments for the infertility caused by the condition in either sex.
Management of AIS is currently limited to symptomatic management; methods to correct a malfunctioning androgen receptor protein that result from an AR gene mutation are not currently available. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, and genetic and psychological counseling.
Due to its mild presentation, MAIS often goes unnoticed and untreated. Management of MAIS is currently limited to symptomatic management; methods to correct a malfunctioning androgen receptor protein that result from an AR gene mutation are not currently available. Treatment includes surgical correction of mild gynecomastia, minor hypospadias repair, and testosterone supplementation. Supraphysiological doses of testosterone have been shown to correct diminished secondary sexual characteristics in men with MAIS, as well as to reverse infertility due to low sperm count. As is the case with PAIS, men with MAIS will experience side effects from androgen therapy (such as the suppression of the hypothalamic-pituitary-gonadal axis) at a higher dosage than unaffected men. Careful monitoring is required to ensure the safety and efficacy of treatment. Regular breast and prostate examinations may be necessary due to comorbid association with breast and prostate cancers.
Management of AIS is currently limited to symptomatic management; methods to correct a malfunctioning androgen receptor protein that result from an AR gene mutation are not currently available. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, and genetic and psychological counseling.
Testosterone has been used to successfully treat undervirilization in some but not all men with PAIS, despite having supraphysiological levels of testosterone to start with. Treatment options include transdermal gels or patches, oral or injectable testosterone undecanoate, other injectable testosterone esters, testosterone pellets, or buccal testosterone systems. Supraphysiological doses may be required to achieve the desired physiological effect, which may be difficult to achieve using non-injectable testosterone preparations. Exogenous testosterone supplementation in unaffected men can produce various unwanted side effects, including prostatic hypertrophy, polycythemia, gynecomastia, hair loss, acne, and the suppression of the hypothalamic-pituitary-gonadal axis, resulting in the reduction of gonadotropins (i.e., luteinizing hormone and follicle-stimulating hormone) and spermatogenic defect. These effects may not manifest at all in men with AIS, or might only manifest at a much higher concentration of testosterone, depending on the degree of androgen insensitivity. Those undergoing high dose androgen therapy should be monitored for safety and efficacy of treatment, possibly including regular breast and prostate examinations. Some individuals with PAIS have a sufficiently high sperm count to father children; at least one case report has been published that describes fertile men who fit the criteria for grade 2 PAIS (micropenis, penile hypospadias, and gynecomastia). Several publications have indicated that testosterone treatment can correct low sperm counts in men with MAIS. At least one case report has been published that documents the efficacy of treating a low sperm-count with tamoxifen in an individual with PAIS.
Individuals with CAIS are raised as females. They are born phenotypically female and almost always have a heterosexual female gender identity; the incidence of homosexuality in women with CAIS is thought to be less than unaffected women. However, at least two case studies have reported male gender identity in individuals with CAIS.
Preimplantation genetic diagnosis (PGD or PIGD) refers to genetic profiling of embryos prior to implantation (as a form of embryo profiling), and sometimes even of oocytes prior to fertilization. When used to screen for a specific genetic sequence, its main advantage is that it avoids selective pregnancy termination, as the method makes it highly likely that a selected embryo will be free of the condition under consideration.
In the UK, AIS appears on a list of serious genetic diseases that may be screened for via PGD. Some ethicists, clinicians, and intersex advocates have argued that screening embryos to specifically exclude intersex traits are based on social and cultural norms as opposed to medical necessity.
Males and females may be treated with hormone replacement therapy (i.e., with androgens and estrogens, respectively), which will result in normal sexual development and resolve most symptoms. In the case of 46,XY (genetically male) individuals who are phenotypically female and/or identify as the female gender, they should be treated with estrogens instead. Removal of the undescended testes should be performed in 46,XY females to prevent their malignant degeneration, whereas in 46,XY males surgical correction of the genitals is generally required, and, if necessary, an orchidopexy (relocation of the undescended testes to the scrotum) may be performed as well. Namely in genetic females presenting with ovarian cysts, GnRH analogues may be used to control high FSH and LH levels if they are unresponsive to estrogens.
XX males are sterile due to low or no sperm content and there is currently no treatment to address this infertility. Genital ambiguities, while not necessary to treat for medical reasons, can be treated through the use of hormonal therapy, surgery, or both. Since XX male syndrome is variable in its presentation, the specifics of treatment varies widely as well. In some cases gonadal surgery can be performed to remove partial or whole female genitalia. This may be followed by plastic and reconstructive surgery to make the individual appear more externally male. Conversely, the individual may wish to become more feminine and feminizing genitoplasty can be performed to make the ambiguous genitalia appear more female. Hormonal therapy may also aid in making an individual appear more male or female.
Patients with Leydig cell hypoplasia may be treated with hormone replacement therapy (i.e., with androgens), which will result in normal sexual development and the resolution of most symptoms. In the case of 46,XY (genetically "male") individuals who are phenotypically female and/or identify as the female gender, estrogens should be given instead. Surgical correction of the genitals in 46,XY males may be required, and, if necessary, an orchidopexy (relocation of the undescended testes to the scrotum) may be performed as well.
Surgery is sometimes performed to alter the appearance of the genitals. However many surgeries performed on intersex people lack clear evidence of necessity, can be considered as mutilating, and are widely considered to be human rights violations when performed without the informed consent of the recipient.
Treatment of HH is usually with hormone replacement therapy, consisting of androgen and estrogen administration in males and females, respectively.
5α-Reductase is an enzyme that converts testosterone to 5α-dihydrotestosterone (DHT) in peripheral tissues. These enzymes also participate in the creation of such neurosteroids as allopregnanolone and THDOC, convert progesterone into dihydroprogesterone (DHP), and convert deoxycorticosterone (DOC) into dihydrodeoxycorticosterone (DHDOC). 5-ARD is biochemically characterized by low to low-normal levels of testosterone and decreased levels of DHT, creating a higher testosterone/DHT ratio.
DHT is a potent androgen, and is necessary for the development of male external genitalia in utero.
One of the challenging aspects of long-term management is optimizing growth so that a child with CAH achieves his or her height potential because both undertreatment and overtreatment can reduce growth or the remaining time for growth. While glucocorticoids are essential for health, dosing is always a matter of approximation. In even mildly excessive amounts, glucocorticoids slow growth. On the other hand, adrenal androgens are readily converted to estradiol, which accelerates bone maturation and can lead to early epiphyseal closure. This narrow target of optimal dose is made more difficult to obtain by the imperfect replication of normal diurnal plasma cortisol levels produced by 2 or 3 oral doses of hydrocortisone. As a consequence, average height losses of about 4 inches (10 cm) have been reported with traditional management.
Traditionally, pediatric endocrinologists have tried to optimize growth by measuring a child every few months to assess current rate of growth, by checking the bone age every year or two, by periodically measuring 17OHP and testosterone levels as indicators of adrenal suppression, and by using hydrocortisone for glucocorticoid replacement rather than longer-acting prednisone or dexamethasone.
The growth problem is even worse in the simple virilizing forms of CAH which are detected when premature pubic hair appears in childhood, because the bone age is often several years advanced at the age of diagnosis. While a boy (or girl) with simple virilizing CAH is taller than peers at that point, he will have far fewer years remaining to grow, and may go from being a very tall 7-year-old to a 62-inch 13-year-old who has completed growth. Even with adrenal suppression, many of these children will have already had central precocious puberty triggered by the prolonged exposure of the hypothalamus to the adrenal androgens and estrogens. If this has begun, it may be advantageous to suppress puberty with a gonadotropin-releasing hormone agonist such as leuprolide to slow continuing bone maturation.
In recent years some newer approaches to optimizing growth have been researched and are beginning to be used. It is possible to reduce the effects of androgens on the body by blocking the receptors with an antiandrogen such as flutamide and by reducing the conversion of testosterone to estradiol. This conversion is mediated by aromatase and can be inhibited by aromatase blockers such as testolactone. Blocking the effects and conversions of estrogens will allow use of lower doses of glucocorticoids with less risk of acceleration of bone maturation. Other proposed interventions have included bilateral adrenalectomy to remove the androgen sources, or growth hormone treatment to enhance growth.
For a more extensive review of the difficulties of optimizing growth, see Migeon CJ, Wisneiewski AB. Congenital adrenal hyperplasia owing to 21-hydroxylase deficiency: growth, development, and therapeutic considerations. Endocrinol Metab Clin N Am 30:193-206, 2001.
Even after diagnosis and initiation of treatment, a small percentage of children and adults with infancy or childhood onset CAH die of adrenal crisis. Deaths from this are entirely avoidable if the child and family understand that the daily glucocorticoids cannot be allowed to be interrupted by an illness. When a person is well, missing a dose, or even several doses, may produce little in the way of immediate symptoms. However, glucocorticoid needs are increased during illness and stress, and missed doses during an illness such as the "flu" (or viral gastroenteritis) can lead within hours to reduced blood pressure, shock, and death.
To prevent this, all persons taking replacement glucocorticoids are taught to increase their doses in the event of illness, surgery, severe injury, or severe exhaustion. More importantly, they are taught that vomiting warrants an injection within hours of hydrocortisone (e.g., SoluCortef) or other glucocorticoid. This recommendation applies to both children and adults. Because young children are more susceptible to vomiting illnesses than adults, pediatric endocrinologists usually teach parents how to give hydrocortisone injections.
As an additional precaution, persons with adrenal insufficiency are advised to wear a medical identification tag or carry a wallet card to alert those who may be providing emergency medical care of the urgent need for glucocorticoids.
Mild androgen insensitivity syndrome (MAIS) is a condition that results in a mild impairment of the cell's ability to respond to androgens. The degree of impairment is sufficient to impair spermatogenesis and / or the development of secondary sexual characteristics at puberty in males, but does not affect genital differentiation or development. Female genital and sexual development is not significantly affected by the insensitivity to androgens; as such, MAIS is only diagnosed in males. The clinical phenotype associated with MAIS is a normal male habitus with mild spermatogenic defect and / or reduced secondary terminal hair.
MAIS is one of three types of androgen insensitivity syndrome, which is divided into three categories that are differentiated by the degree of genital masculinization: complete androgen insensitivity syndrome (CAIS) is indicated when the external genitalia is that of a normal female, mild androgen insensitivity syndrome (MAIS) is indicated when the external genitalia is that of a normal male, and partial androgen insensitivity syndrome (PAIS) is indicated when the external genitalia is partially, but not fully masculinized.
Androgen insensitivity syndrome is the largest single entity that leads to 46,XY undermasculinization.
The condition affects only those with a Y-chromosome because dihydrotestosterone (DHT) has no known role in development of XX fetuses.
Upon diagnosis, estrogen and progesterone therapy is typically commenced, promoting the development of female characteristics.
The consequences of streak gonads to a person with Swyer syndrome:
1. Gonads cannot make estrogen, so the breasts will not develop and the uterus will not grow and menstruate until estrogen is administered. This is often given transdermally.
2. Gonads cannot make progesterone, so menstrual periods will not be predictable until progestin is administered, usually as a pill.
3. Gonads cannot produce eggs so conceiving children naturally is not possible. A woman with a uterus and ovaries but without female gamete is able to become pregnant by implantation of another woman's fertilized egg (embryo transfer).
4. Streak gonads with Y chromosome-containing cells have a high likelihood of developing cancer, especially gonadoblastoma. Streak gonads are usually removed within a year or so of diagnosis since the cancer can begin during infancy.
The 2006 Consensus statement on the management of intersex disorders states that individuals with 17β-hydroxysteroid dehydrogenase III deficiency have an intermediate risk of germ cell malignancy, at 28%, recommending that gonads be monitored. A 2010 review put the risk of germ cell tumors at 17%.
The management of 17β-hydroxysteroid dehydrogenase III deficiency can consist, according to one source, of the elimination of gonads prior to puberty, in turn halting masculinization.
Hewitt and Warne state that, children with 17β-hydroxysteroid dehydrogenase III deficiency who are raised as girls often later identify as male, describing a "well known, spontaneous change of gender identity from female to male" that "occurs after the onset of puberty." A 2005 systematic review of gender role change identified the rate of gender role change as occurring in 39–64% of individuals with 17β-hydroxysteroid dehydrogenase III deficiency raised as girls.
Treatment of hyperandrogenism varies with the underlying condition that causes it. As a hormonal symptom of polycystic ovary syndrome, menopause, and other endocrine disorders, it is primarily treated as a symptom of these disorders. Systemically, it is treated with antiandrogens such as cyproterone acetate, flutamide and spironolactone to control the androgen levels in the patient's body. For Hyperandrogenism caused by Late-Onset Congenital Adrenal Hyperplasia (CAH), treatment is primarily focused on providing the patient with Glucocorticoids to combat the low cortisol production and the corresponding increase in androgens caused by the swelling of the Adrenal Glands. Oestrogen-based oral contraceptives are used to treat both CAH and PCOS caused hyperandrogenism. These hormonal treatments have been found to reduce the androgen excess and suppress adrenal androgen production and cause a significant decrease in hirsutism.
Hyperandrogenism is often managed symptomatically. Hirsutism and acne both respond well to the hormonal treatments described above, with 60-100% reporting an improvement in hirsutism. Androgenic alopecia however, does not show a significant improvement with hormonal treatments and requires other treatments, such as hair transplantation.
Since risk factors are not known and vary among individuals with hyperandrogegism, there is no sure method to prevent this medical condition. Therefore, more longterm studies are needed first to find a cause for the condition before being able to find a sufficient method of prevention.
However, there are a few things that can help avoid long-term medical issues related to hyperandrogenism like PCOS. Getting checked by a medical professional for hyperandrogenism; especially if one has a family history of the condition, irregular periods, or diabetes; can be beneficial. Watching your weight and diet is also important in decreasing your chances, especially in obese females, since continued exercise and maintaining a healthy diet leads to an improved menstrual cycle as well as to decreased insulin levels and androgen concentrations.
Approximately 1 in 20,000 individuals with a male appearance have 46,XX testicular disorder.
Isolated 17,20-lyase deficiency (ILD), also called isolated 17,20-desmolase deficiency, is a rare endocrine and autosomal recessive genetic disorder which is characterized by a complete or partial loss of 17,20-lyase activity and, in turn, impaired production of the androgen and estrogen sex steroids. The condition manifests itself as pseudohermaphroditism (partially or fully underdeveloped genitalia) in males, in whom it is considered to be a form of intersex, and, in both sexes, as a reduced or absent puberty/lack of development of secondary sexual characteristics, resulting in a somewhat childlike appearance in adulthood (if left untreated).
Unlike the case of combined 17α-hydroxylase/17,20-lyase deficiency, isolated 17,20-lyase deficiency does not affect glucocorticoid production (or mineralocorticoid levels), and for that reason, does not result in adrenal hyperplasia or hypertension.
Follicle-stimulating hormone (FSH) insensitivity, or ovarian insensitivity to FSH in females, also referable to as ovarian follicle hypoplasia or granulosa cell hypoplasia in females, is a rare autosomal recessive genetic and endocrine syndrome affecting both females and males, with the former presenting with much greater severity of symptomatology. It is characterized by a resistance or complete insensitivity to the effects of follicle-stimulating hormone (FSH), a gonadotropin which is normally responsible for the stimulation of estrogen production by the ovaries in females and maintenance of fertility in both sexes. The condition manifests itself as hypergonadotropic hypogonadism (decreased or lack of production of sex steroids by the gonads despite high circulating levels of gonadotropins), reduced or absent puberty (lack of development of secondary sexual characteristics, resulting in sexual infantilism if left untreated), amenorrhea (lack of menstruation), and infertility in females, whereas males present merely with varying degrees of infertility and associated symptoms (e.g., decreased sperm production).
A related condition is luteinizing hormone (LH) insensitivity (termed Leydig cell hypoplasia when it occurs in males), which presents with similar symptoms to those of FSH insensitivity but with the symptoms in the respective sexes reversed (i.e., hypogonadism and sexual infantilism in males and merely problems with fertility in females); however, males also present with feminized or ambiguous genitalia (also known as pseudohermaphroditism), whereas ambiguous genitalia does not occur in females with FSH insensitivity. Despite their similar causes, LH insensitivity is considerably more common in comparison to FSH insensitivity.