Dataset: 9.3K articles from Wikipedia (CC BY-SA).
More datasets: Wikipedia | CORD-19

Logo Beuth University of Applied Sciences Berlin

Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin

Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)

Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies

Imprint / Contact

Highlight for Query ‹Tyzzer's disease symptoms

Lecithin cholesterol acyltransferase deficiency

Abstract

Lecithin cholesterol acyltransferase deficiency (LCAT deficiency) is a disorder of lipoprotein metabolism. The disease has two forms: Familial LCAT deficiency, in which there is complete LCAT deficiency, and Fish-eye disease, in which there is a partial deficiency.

Lecithin cholesterol acyltransferase catalyzes the formation of cholesterol esters in lipoproteins.

Signs and symptoms

Symptoms of the familial form include visual impairment caused by diffuse corneal opacities, target cell hemolytic anemia, and renal failure. Less common symptoms include atherosclerosis, hepatomegaly (enlarged liver), splenomegaly (enlarged spleen), and lymphadenopathy.

Fish-eye disease is less severe and most commonly presents with impaired vision due to corneal opacification. It rarely presents with other findings, although, atherosclerosis, hepatomegaly, splenomegaly, and lymphadenopathy can occur. Carlson and Philipson found that the disease was named so because the cornea of the eye was so opaque or cloudy with dots of cholesterol that it resembled a boiled fish.

If an individual only carry one copy of the mutated gene, they typically do not show symptoms.

Pathophysiology

A deficiency of LCAT causes accumulation of unesterified cholesterol in certain body tissues. Cholesterol effluxes from cells as free cholesterol and is transported in HDL as esterified cholesterol. LCAT is the enzyme that esterifies the free cholesterol on HDL to cholesterol ester and allows the maturation of HDL. LCAT deficiency does not allow for HDL maturation resulting in its rapid catabolism of circulating apoA-1 and apoA-2. The remaining form of HDL resembles nascent HDL.

The LCAT glycoprotein produces lysophosphatidylcholine and cholesterol ester and binds to lipoproteins after being secreted by the liver. Usually the enzyme produced is responsible for cholesterol ester formation and high density lipoprotein (HDL) metabolism, but in fish-eye disease the enzyme cannot esterify, or make the acid into an alkyl, cholesterol in HDL particles. However, there is only a partial deficiency because the enzyme remains active on the cholesterol particles in very low density lipoproteins (VLDL) and low density lipoproteins (LDL). The opaqueness of the eye is caused by the deposit of lipids onto the cornea.

Diagnosis

Definitive diagnosis requires LCAT gene analysis for mutation and functional activity. However, numerous lab tests may help with making a diagnosis such as complete blood count (CBC), urinalysis, blood chemistries, lipid panels, and plasma LCAT activity.

Fish-eye disease is characterized by abnormalities like visual impairment, plaques of fatty material, and dense opacification.

Diagnosis | Types

Both the familial type and Fish-eye disease are autosomal recessive disorders caused by mutations of the "LCAT" gene located on chromosome 16q22.1, which is the long (q) arm of chromosome 16 a position 22.1. Both diseases are very rare with ~70 reported cases of familial LCAT deficiency and ~30 cases of fish-eye disease.

Diagnosis | Genetic findings in Fish eye disease

Mutations in the LCAT gene, which is localized in the q21–22 region of chromosome 16, cause fish-eye disease. The mutation in the LCAT gene is homozygous for a Thr123→Ile mutation or Pro10→Leu mutation. New mutations have been identified as homozygosity for an A2205→G nucleotide substitution in exon 4 of the LCAT gene which is predicted to be the cause of an Asp131→Asn substitution.

Treatment

Currently, there is no specific treatment to correct the LCAT deficiency so therapy is focused on symptom relief. Corneal transplant may be considered for patients presenting with severely impaired vision caused by cholesterol corneal opacities. Dialysis may be required for patients presenting with renal failure, and kidney transplant may be considered.

Prognosis

Renal failure is the major cause of morbidity and mortality in complete LCAT deficiency, while in partial deficiency (fish eye disease) major cause of morbidity is visual impairment due to corneal opacity. These patients have low HDL cholesterol but surprisingly premature atherosclerosis is not seen. However, there are some reported cases.