Dataset: 9.3K articles from Wikipedia (CC BY-SA).
More datasets: Wikipedia | CORD-19

Logo Beuth University of Applied Sciences Berlin

Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin

Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)

Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies

Imprint / Contact

Highlight for Query ‹Adenoviridae infectious disease screening

I-cell disease

Abstract

Inclusion-cell (I-cell) disease, also referred to as mucolipidosis II (ML II), is part of the lysosomal storage disease family and results from a defective phosphotransferase (an enzyme of the Golgi apparatus). This enzyme transfers phosphate to mannose residues on specific proteins. Mannose 6 phosphate serves as a marker for them to be targeted to lysosomes within the cell. Without this marker, the proteins are instead excreted outside the cell—the default pathway for proteins moving through the Golgi apparatus. Lysosomes cannot function without these proteins, which function as catabolic enzymes for the normal breakdown of substances (e.g. oligosaccharides, lipids, and glycosaminoglycans) in various tissues throughout the body (i.e. fibroblasts). As a result, a buildup of these substances occurs within lysosomes because they cannot be degraded, resulting in the characteristic I-cells, or "inclusion cells". These cells can be identified under the microscope. In addition, the defective lysosomal enzymes normally found only within lysosomes are instead found in high concentrations in the blood.

Presentation

Mucolipidosis II (ML II) is a particularly severe form of ML that has a significant resemblance to another mucopolysaccharidoses called Hurler syndrome. Generally only laboratory testing can distinguish the two as the presentation is so similar. There are high plasma levels of lysosomal enzymes and are often fatal in childhood. Typically, by the age of 6 months, failure to thrive and developmental delays are obvious symptoms of this disorder. Some physical signs, such as abnormal skeletal development, coarse facial features, and restricted joint movement, may be present at birth. Children with ML II usually have enlargement of certain organs, such as the liver (hepatomegaly) or spleen (splenomegaly), and sometimes even the heart valves. Affected children often have stiff claw-shaped hands and fail to grow and develop in the first months of life. Delays in the development of their motor skills are usually more pronounced than delays in their cognitive (mental processing) skills. Children with ML II eventually develop a clouding on the cornea of their eyes and, because of their lack of growth, develop short-trunk dwarfism (underdeveloped trunk). These young patients are often plagued by recurrent respiratory tract infections, including pneumonia, otitis media (middle ear infections), bronchitis and carpal tunnel syndrome. Children with ML II generally die before their seventh year of life, often as a result of congestive heart failure or recurrent respiratory tract infections.

Pathophysiology

I-cell disease is an autosomal recessive disorder caused by a deficiency of GlcNAc phosphotransferase, which phosphorylates mannose residues to mannose-6-phosphate on N-linked glycoproteins in the Golgi apparatus within the cell. Without mannose-6-phosphate to target them to the lysosomes, the enzymes are transported from the Golgi to the extracellular space, resulting in large intracellular inclusions of molecules requiring lysosomal degradation in patients with the disease (hence the name of the disorder). Hydrolases secreted into the blood stream cause little problem as they are deactivated in the neutral pH of the blood.

It can be associated with GNPTA.

In a case report, it was complicated by severe dilative cardiomyopathy(DCM)

Though rare, a deficiency of phosphodiesterase which would cleave GlcNAc from the Mannose 6 Phosphate tag will also cause I-Cell. The presence of lipids, glycosaminoglycans (GAG's) and carbohydrates in the blood provide for the distinguishing characteristic to separate I-Cell from Hurlers Syndrome, in Hurlers, only glycosaminoglycans would be present.

Diagnosis

Diagnostic measures can include the following.

Before birth:

- Abnormally low levels of UDP-N-acetylglucoseamine-1-phosphodiesterase enzyme activity in amniotic fluid cells or chronic villi

In infants:

- Elevated plasma lysosomal enzyme concentration

- Decreased concentration of lysosomal enzymes in cultured fibroblasts

- Presence of inclusion bodies and peripheral blood lymphocytes

- Low levels of UDP-N-acetylglucoseamine-1-phosphotransferase enzyme activity as measured in white blood cells

Treatment

A cure does not exist for I-Cell disease/Mucolipidosis II disease. Treatment is limited to controlling or reducing the symptoms that are associated with this disorder. Nutritional supplements, particularly iron and vitamin B12, are often recommended for individuals with I-Cell disease. Physical therapy to improve motor delays and speech therapy to improve language acquisition are treatment options. Surgery can remove the thin layer of corneal clouding to temporarily improve the complication. It is possible that bone marrow transplant may be helpful in delaying or correcting the neurological deterioration that occurs with I-Cell disease.. Even though there is no existing treatment, the Yash Gandhi Foundation is a 501(c)(3) non-profit organization focused on funding research for I-Cell disease