Dataset: 9.3K articles from Wikipedia (CC BY-SA).
More datasets: Wikipedia | CORD-19

Logo Beuth University of Applied Sciences Berlin

Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin

Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)

Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies

Imprint / Contact

Highlight for Query ‹Fungal Disease, Pulmonary screening

Pulmonary sequestration

Abstract

A pulmonary sequestration (bronchopulmonary sequestration or cystic lung lesion), is a medical condition wherein a piece of tissue that ultimately develops into lung tissue is not attached to the pulmonary arterial blood supply, as is the case in normally developing lung. As a result, this sequestered tissue is not connected to the normal bronchial airway architecture, and as a result, fails to function in, and contribute to, respiration of the organism.

This condition is usually diagnosed in children and is generally thought to be congenital in nature. More and more, these lesions are diagnosed "in utero" by prenatal ultrasound.

Symptoms

Symptoms can vary greatly, but they include a persistent dry cough.

Symptoms | Complications

Failure to have a pulmonary sequestration removed can lead to a number of complications. These include:

- Hemorrhage that can be fatal.

- The creation of a left-right shunt, where blood flows in a shortcut through the feed off the aorta.

- Chronic infection. Diseases such as bronchiectasis, tuberculosis, aspergillosis, bronchial carcinoid and bronchogenic squamous cell carcinoma.

Cause

There is still much debate to whether pulmonary sequestration is a congenital problem or acquired through reccurent pulmonary infection. It is widely believed that extralobar pulmonary sequestrations are a result of prenatal pulmonary malformation while intralobar pulmonary sequestrations can develop due to reccurent pulmonary infections in adolescents and young adults.

Diagnosis

Bronchopulmonary sequestration (BPS) is a rare congenital malformation of the lower respiratory tract.

It consists of a nonfunctioning mass of normal lung tissue that lacks normal communication with the tracheobronchial tree, and that receives its arterial blood supply from the systemic circulation.

BPS is estimated to comprise 0.15 to 6.4 percent of all congenital pulmonary malformations, making it an extremely rare disorder.

Sequestrations are classified anatomically.

Intralobar sequestration (ILS) in which the lesion is located within a normal lobe and lacks its own visceral pleura.

Extralobar sequestration (ELS) in which the mass is located outside the normal lung and has its own visceral pleura

The blood supply of 75% of pulmonary sequestrations is derived from the thoracic or abdominal aorta.

The remaining 25% of sequestrations receive their blood flow from the subclavian, intercostal, pulmonary, pericardiophrenic, innominate, internal mammary, celiac, splenic, or renal arteries.

Treatment

Usually the sequestration is removed after birth via surgery. In most cases this surgery is safe and effective; the child will grow up to have normal lung function.

In a few instances, fetuses with sequestrations develop problematic fluid collections in the chest cavity. In these situations a Harrison catheter shunt can be used to drain the chest fluid into the amniotic fluid.

In rare instances where the fetus has a very large lesion, resuscitation after delivery can be dangerous. In these situations a specialized delivery for management of the airway compression can be planned called the EXIT procedure, or a fetal laser ablation procedure can be performed. During this minimally invasive fetal intervention, a small needle is inserted into the sequestration, and a laser fiber is targeted at the abnormal blood vessel going to the sequestration. The goal of the operation is to use laser energy to stop the blood flow to the sequestration, causing it to stop growing. Ideally, after the surgery, the sequestration steals less blood flow from the fetus, and the heart and lungs start growing more normally as the sequestration shrinks in size and the pleural effusion goes away.

The treatment for this is a wedge resection, segmentectomy, or lobectomy via a VATS procedure or thoracotomy.

Pulmonary sequestrations usually get their blood supply from the thoracic aorta.