Dataset: 9.3K articles from Wikipedia (CC BY-SA).
More datasets: Wikipedia | CORD-19

Logo Beuth University of Applied Sciences Berlin

Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin

Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)

Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies

Imprint / Contact

Highlight for Query ‹Filoviridae infectious disease screening

Diabetic foot

Abstract

A diabetic foot is a foot that exhibits any pathology that results directly from diabetes mellitus or any long-term (or "chronic") complication of diabetes mellitus. Presence of several characteristic diabetic foot pathologies such as infection, diabetic foot ulcer and neuropathic osteoarthropathy is called diabetic foot syndrome.

Due to the peripheral nerve dysfunction associated with diabetes (diabetic neuropathy), patients have a reduced ability to feel pain. This means that minor injuries may remain undiscovered for a long while. People with diabetes are also at risk of developing a diabetic foot ulcer. Research estimates that the lifetime incidence of foot ulcers within the diabetic community is around 15% and may become as high as 25%.

In diabetes, peripheral nerve dysfunction can be combined with peripheral artery disease (PAD) causing poor blood circulation to the extremities (diabetic angiopathy). Around half of patients with a diabetic foot ulcer have co-existing PAD.

Where wounds take a long time to heal, infection may set in and lower limb amputation may be necessary. Foot infection is the most common cause of non-traumatic amputation in people with diabetes.

Prevention

Prevention of diabetic foot may include optimising metabolic control (regulating glucose levels); identification and screening of people at high risk for diabetic foot ulceration; and patient education in order to promote foot self-examination and foot care knowledge. Patients would be taught routinely to inspect their feet for hyperkeratosis, fungal infection, skin lesions and foot deformities. Control of footwear is also important as repeated trauma from tight shoes can be a triggering factor. There is however only limited evidence that patient education has a long-term impact as a preventative measure.

"Of all methods proposed to prevent diabetic foot ulcers, only foot temperature-guided avoidance therapy was found beneficial in RCTs" according to a meta-analysis.

Treatment

Treatment of diabetic foot can be challenging and prolonged; it may include orthopaedic appliances, antimicrobial drugs and topical dressings.

Most diabetic foot infections (DFIs) require treatment with systemic antibiotics. The choice of the initial antibiotic treatment depends on several factors such as the severity of the infection, whether the patient has received another antibiotic treatment for it, or whether the infection has been caused by a micro-organism that is known to be resistant to usual antibiotics (e.g. MRSA). The objective of antibiotic therapy is to stop the infection and ensure it does not spread.

It is unclear whether any particular antibiotic is better than any other for curing infection or avoiding amputation. One trial suggested that ertapenem with or without vancomycin is more effective than tigecycline for resolving DFIs. It is also generally unclear whether different antibiotics are associated with more or fewer adverse effects.

It is recommended however that the antibiotics used for treatment of diabetic foot ulcers should be used after deep tissue culture of the wound. Tissue culture and not pus swab culture should be done. Antibiotics should be used at correct doses in order to prevent the emergence of drug resistance.