Dataset: 9.3K articles from Wikipedia (CC BY-SA).
More datasets: Wikipedia | CORD-19

Logo Beuth University of Applied Sciences Berlin

Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin

Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)

Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies

Imprint / Contact

Highlight for Query ‹COVID-19 screening

Naive T cell

Abstract

A naïve T cell (T0 cell) is a T cell that has differentiated in bone marrow, and successfully undergone the positive and negative processes of central selection in the thymus. Among these are the naïve forms of helper T cells (CD4+) and cytotoxic T cells (CD8+). A naïve T cell is considered mature and, unlike activated or memory T cells, has not encountered its cognate antigen within the periphery.

Phenotype

Naïve T cells are commonly characterized by the surface expression of L-selectin (CD62L); the absence of the activation markers CD25, CD44 or CD69; and the absence of memory CD45RO isoform. They also express functional IL-7 receptors, consisting of subunits IL-7 receptor-α, CD127, and common-γ chain, CD132. In the naïve state, T cells are thought to be quiescent and non-dividing, requiring the common-gamma chain cytokines IL-7 and IL-15 for homeostatic survival mechanisms.

Function

Naïve T cells can respond to novel pathogens that the immune system has not yet encountered. Recognition by a naïve T cell clone of its cognate antigen results in the initiation of an immune response. In turn, this results in the T cell acquiring an activated phenotype seen by the up-regulation of surface markers CD25, CD44, CD62L, CD69 and may further differentiate into a memory T cell.

Having adequate numbers of naïve T cells is essential for the immune system to continuously respond to unfamiliar pathogens.

Mechanism of activation

When a recognized antigen binds to the T cell antigen receptor (TCR) located in the cell membrane of Th0 cells, these cells are activated through the following "classical" signal transduction cascade:

- the tyrosine kinase Lck is activated, which results in phosphorylation of

- the CD3 coreceptor complex and ζ-chains of the TCR and activation of the ζ-chain- associated protein Zap70

- activated Zap70 in turn phosphorylates the membrane adaptor Lat, which subsequently recruits several Src homology domain–containing proteins, including phospholipase C-γ1 (PLC-γ1)

- activation of PLC-γ1 results in the hydrolysis of phosphatidylinositol 4,5-bisphosphate to inositol 3,4,5-triphosphate and diacylglycerol

- inositol 3,4,5-triphosphate triggers release of Ca from intracellular stores and diacylglycerol activates protein kinase C and RasGRP

- RasGRP in turn activates the mitogen-activated protein kinase cascade which

An alternative "non-classical" pathway involves activated Zap70 directly phosphorylating the p38 MAPK that in turn induces the expression of the vitamin D receptor (VDR). Furthermore, the expression of PLC-γ1 is dependent on VDR activated by calcitriol. Naïve T cells have very low expression of VDR and PLC-γ1. However activated TCR signaling through p38 upregulates VDR expression and calcitriol activated VDR in turn upregulates PLC-γ1 expression. Hence the activation of naïve T cells is crucially dependent on adequate calcitriol levels.

In summary, activation of T cells first requires activation through the non-classical pathway to increase expression of VDR and PLC-γ1 before activation through the classical pathway can proceed. This provides a delayed response mechanism where the innate immune system is allowed time (~48 hrs) to clear an infection before the inflammatory T cell mediated adaptive immune response kicks in.