Dataset: 9.3K articles from Wikipedia (CC BY-SA).
More datasets: Wikipedia | CORD-19

Logo Beuth University of Applied Sciences Berlin

Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin

Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)

Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies

Imprint / Contact

Highlight for Query ‹Brain syndrome NOS risk

Wolcott–Rallison syndrome

Abstract

Wolcott–Rallison syndrome, WRS, is a rare, autosomal recessive disorder with infancy-onset diabetes mellitus, multiple epiphyseal dysplasia, osteopenia, mental retardation or developmental delay, and hepatic and renal dysfunction as main clinical findings. Patients with WRS have mutations in the EIF2AK3 gene, which encodes the pancreatic eukaryotic translation initiation factor 2-alpha kinase 3.

Genetics

The main focus for this autosomal recessive disease is mutations to the EIF2AK3 gene. This gene is located on chromosome 2 p11.2. In unrelated families, different mutations have been observed in the EIF2AK3 gene, including missense and nonsense mutations. For some cases for unrelated families, identical mutations were observed, although these cases are rare.

The EIKF2AK3 gene codes for PERK (pancreatic endoplasmic reticulum kinase), an explanation for the spectrum symptoms. PERK is associated with the activity of beta cells in the pancreas. Beta cells are needed for the proper release of insulin into the blood stream after an increase in blood glucose. This kinase is needed for the control of protein levels in the endoplasmic reticulum and is linked to ribosome activity. The endoplasmic reticulum is a major protein sorting and processing center in every cell of the body. A broad range of bodily systems is affected because of the lack of post-translational modifications of to proteins. These proteins are coming from the endoplasmic reticulum can be in the cells of the various organ systems effected, such as urinary and central nervous system. EIKF2AK3 is also involved in bone cells. This is part of the reason why patients suffer from multiple epiphyseal dysplasia and osteopenia.

Diagnosis

Initially, patients with neonatal or early-childhood onset diabetes are possible candidates for having Wolcott–Rallison syndrome. The other symptoms include the multiple epiphyseal dysplasia, osteopenia, intellectual disability, and hepatic and renal dysfunction. Patients with the symptoms that line up with Wolcott–Rallison syndrome can be suggested for genetics testing. The key way to test for this disease specifically is through genetic testing for the EIKF2AK3 mutation. Molecular genetic analysis can be done for the patient and the parents to test for de novo mutations or inherited. It can also show whether the patient's parents are heterozygotes or homozygotes for the normal phenotype. X-Rays can show bone age in relation to actual age. Typically the bond age is a few years less than the actual in the patients with WRS. Hypothyroidism is rare is WRS patients but can occur.

Therapies

The most common method to manage hypoglycemia and diabetes is with an insulin pump. . However in infants and very young children long acting insulins like Glargine and Levemir are preferred to prevent recurrent hypoglycemia . As soon as parent knows Walcott-Rallison syndrome is the source, treatment or therapy plans need to be drawn up along with frequent check ins to make sure kidney and liver functions are around normal and insulin therapy are working. If needed, the patient can undergo thyroxin therapy in order to maintain proper thyroid stimulating hormone levels. This has only been needed in a few cases were hypothyroidism was present in the patient.