Dataset: 9.3K articles from Wikipedia (CC BY-SA).
More datasets: Wikipedia | CORD-19

Logo Beuth University of Applied Sciences Berlin

Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin

Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)

Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies

Imprint / Contact

Highlight for Query ‹Progeroid facial appearance with hand anomalies medication

Hyperammonemia

Abstract

Hyperammonemia (or hyperammonaemia) is a metabolic disturbance characterised by an excess of ammonia in the blood. It is a dangerous condition that may lead to brain injury and death. It may be primary or secondary.

Ammonia is a substance that contains nitrogen. It is a product of the catabolism of protein. It is converted to the less toxic substance urea prior to excretion in urine by the kidneys. The metabolic pathways that synthesize urea involve reactions that start in the mitochondria and then move into the cytosol. The process is known as the urea cycle, which comprises several enzymes acting in sequence.

Signs and symptoms | Complication

Hyperammonemia is one of the metabolic derangements that contribute to hepatic encephalopathy, which can cause swelling of astrocytes and stimulation of NMDA-receptors in the brain. Overstimulation of NMDA-receptors induces excitotoxicity.

Diagnosis | Types | Specific types

The following list includes such examples:

- - hyperammonemia due to ornithine transcarbamylase deficiency

- - hyperinsulinism-hyperammonemia syndrome (glutamate dehydrogenase 1)

- - hyperornithinemia-hyperammonemia-homocitrullinuria

- - hyperammonemia due to N-acetylglutamate synthetase deficiency

- - hyperammonemia due to carbamoyl phosphate synthetase I deficiency (carbamoyl phosphate synthetase I)

- - hyperlysinuria with hyperammonemia (genetics unknown)

- Methylmalonic acidemia

- Isovaleric acidemia

- Propionic acidemia

- Carnitine palmitoyltransferase II deficiency

- Transient hyperammonemia of the newborn, specifically in the preterm

Treatment

Treatment centers on limiting intake of ammonia and increasing its excretion. Dietary protein, a metabolic source of ammonium, is restricted and caloric intake is provided by glucose and fat. Intravenous arginine (argininosuccinase deficiency) sodium phenylbutyrate and sodium benzoate (ornithine transcarbamoylase deficiency) are pharmacologic agents commonly used as adjunctive therapy to treat hyperammonemia in patients with urea cycle enzyme deficiencies. Sodium phenylbutyrate and sodium benzoate can serve as alternatives to urea for the excretion of waste nitrogen. Phenylbutyrate, which is the product of phenylacetate, conjugates with glutamine to form phenylacetylglutamine, which is excreted by the kidneys. Similarly, sodium benzoate reduces ammonia content in the blood by conjugating with glycine to form hippuric acid, which is rapidly excreted by the kidneys. A preparation containing sodium phenylacetate and sodium benzoate is available under the trade name Ammonul.

Acidification of the intestinal lumen using lactulose can decrease ammonia levels by protonating ammonia and trapping it in the stool. This is a treatment for hepatic encephalopathy.

Treatment of severe hyperammonemia (serum ammonia levels greater than 1000 μmol/L) should begin with hemodialysis if it is otherwise medically appropriate and tolerated.