Dataset: 9.3K articles from Wikipedia (CC BY-SA).
More datasets: Wikipedia | CORD-19

Logo Beuth University of Applied Sciences Berlin

Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin

Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)

Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies

Imprint / Contact

Highlight for Query ‹Cerebelloparenchymal Disorder 1 medication

Short-chain acyl-coenzyme A dehydrogenase deficiency

Abstract

Short-chain acyl-coenzyme A dehydrogenase deficiency (SCADD), also called ACADS deficiency and SCAD deficiency, is an autosomal recessive fatty acid oxidation disorder which affects enzymes required to break down a certain group of fats called short chain fatty acids.

Signs/symptoms

Short-chain acyl-coenzyme A dehydrogenase deficiency affected infants will have vomiting, low blood sugar, a lack of energy (lethargy), poor feeding, and failure to gain weight and grow. Additional features of this disorder may include poor muscle tone (hypotonia), seizures, developmental delays, and microcephaly. The symptoms of short-chain acyl-CoA dehydrogenase deficiency may be triggered during illnesses such as viral infections. In some cases, signs and symptoms may not appear until adulthood, when some individuals may develop muscle weakness, while other individuals mild symptoms may never be diagnosed.

Genetics

SCADD is caused genetically by mutations in the "ACADS" gene, located on chromosome 12q22-qter. Mutations in the "ACADS" gene lead to inadequate levels of short-chain acyl-CoA dehydrogenase, which is important for breaking down short-chain fatty acids. Low levels of this enzyme halt short-chain fatty acids from being further broken down and processed in the mitochondria, consequently, these short-chain fatty acids are not converted into energy.

The disorder is inherited via autosomal recessive. This means the defective gene responsible for the disorder is located on an autosome (chromosome 12 is an autosome), and two copies of the defective gene are needed in order to be born with this disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene.

Diagnosis

The diagnosis of short-chain acyl-coenzyme A dehydrogenase deficiency is based on the following:

- Newborn screening test

- Genetic testing

- Urine test

Diagnosis | Differential diagnosis

The differential diagnosis for short-chain acyl-coenzyme A dehydrogenase deficiency is: ethylmalonic encephalopathy, mitochondrial respiratory chain defects and "multiple" acyl-CoA dehydrogenase deficiency.

Treatment and management

In terms of treatment for short-chain acyl-CoA dehydrogenase deficiency, some individuals may not need treatment, while others might follow administration of:

- Riboflavin

- Dextrose

- Anticonvulsants

Treatment and management | Epidemiology

This disorder, epidemiologically speaking, is thought to affect approximately 1 in 50,000 newborns according to Jethva, et al. While in the U.S. state of California there seems to be a ratio of 1 in 35,000.