Dataset: 9.3K articles from Wikipedia (CC BY-SA).
More datasets: Wikipedia | CORD-19

Logo Beuth University of Applied Sciences Berlin

Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin

Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)

Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies

Imprint / Contact

Highlight for Query ‹Neoplasm of Orbit medication

Myostatin-related muscle hypertrophy

Abstract

Myostatin-related muscle hypertrophy (or myotonic hypertrophy) is a rare genetic condition characterized by reduced body fat and increased skeletal muscle size. Affected individuals have up to twice the usual amount of muscle mass in their bodies. They also tend to have increased muscle strength. Myostatin-related muscle hypertrophy is not known to cause medical problems, and affected individuals are intellectually normal. The prevalence of this condition is unknown.

Mutations in the "MSTN" gene cause myostatin-related muscle hypertrophy. The "MSTN" gene provides instructions for making a protein called myostatin, which is active in muscles used for movement (skeletal muscles) both before and after birth. This protein normally restrains muscle growth, ensuring that muscles do not grow too large. Mutations that reduce the production of functional myostatin lead to an overgrowth of muscle tissue. Myostatin-related muscle hypertrophy has a pattern of inheritance known as incomplete autosomal dominance. People with a mutation in both copies of the gene in each cell (homozygotes) have significantly increased muscle mass and strength. People with a mutation in one copy of the "MSTN" gene in each cell (heterozygotes) also have increased muscle bulk, but to a lesser degree.

Researchers at Guangzhou Institutes of Biomedicine and Health in China have edited the genome of beagles to create double the amount of muscle.